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Go!

DCNs beat Go-champion Lee Sedol [Silver et al., 2016 ]



Atari games

DCNs beat professional human Atari-players [Mnih et al., 2015 ]
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DCNs generate sentences describing the content of an
image [Vinyals et al., 2015 ]
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Feature extraction and learning task

DCNs can be used

i) as stand-alone feature extrac-
tors [Huang and LeCun,
2006 ]

ii) to perform feature extraction
and the learning task directly
[LeCun et al., 1990 ]

input: f = ∈ Rn×n

feature extraction

feature vector Φ(f) ∈ RN

learning task

C. E. Shannonoutput:
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Why are DCNs so successful?

“It is the guiding principle of many applied mathematicians that if
something mathematical works really well, there must be a good un-
derlying mathematical reason for it, and we ought to be able to
understand it.” [I. Daubechies, 2015 ]
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Feature vector should be invariant to spatial location
⇒ translation invariance
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Different handwriting styles correspond to deformations of signals
⇒ deformation insensitivity
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Mallat’s wavelet-modulus DCN

Mallat, 2012, initiated the mathematical analysis of feature
extraction through DCNs
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Mallat’s wavelet-modulus DCN

Features generated in the n-th network layer

Φn
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Mallat’s wavelet-modulus DCN

Directional wavelet system {φJ} ∪ {ψλ}λ∈ΛW ,

ΛW :=
{
λ = (j, k) | j > −J, k ∈ {1, . . . ,K}

}
‖f ∗φJ‖22+

∑
λ∈ΛW

‖f ∗ψλ‖22 = ‖f‖22, ∀f ∈ L2(Rd)



Mallat’s wavelet-modulus DCN

Directional wavelet system {φJ} ∪ {ψλ}λ∈ΛW ,

ΛW :=
{
λ = (j, k) | j > −J, k ∈ {1, . . . ,K}

}
‖f ∗φJ‖22+

∑
λ∈ΛW

‖f ∗ψλ‖22 = ‖f‖22, ∀f ∈ L2(Rd)

...and its edge detection capability [Mallat and Zhong, 1992 ]

|f ∗ ψλ(v) | =



Mallat’s wavelet-modulus DCN

Directional wavelet system {φJ} ∪ {ψλ}λ∈ΛW ,

ΛW :=
{
λ = (j, k) | j > −J, k ∈ {1, . . . ,K}

}
‖f ∗φJ‖22+

∑
λ∈ΛW

‖f ∗ψλ‖22 = ‖f‖22, ∀f ∈ L2(Rd)

...and its edge detection capability [Mallat and Zhong, 1992 ]

|f ∗ ψλ(h) | =



Mallat’s wavelet-modulus DCN

Directional wavelet system {φJ} ∪ {ψλ}λ∈ΛW ,

ΛW :=
{
λ = (j, k) | j > −J, k ∈ {1, . . . ,K}

}
‖f ∗φJ‖22+

∑
λ∈ΛW

‖f ∗ψλ‖22 = ‖f‖22, ∀f ∈ L2(Rd)

...and its edge detection capability [Mallat and Zhong, 1992 ]

|f ∗ ψλ(d) | =



Mallat’s wavelet-modulus DCN

[Mallat, 2012 ] proved that ΦW is “horizontally” translation-invariant

lim
J→∞

|||ΦW (Ttf)− ΦW (f)||| = 0, ∀f ∈ L2(Rd), ∀t ∈ Rd,

and stable w.r.t. deformations (Fτf)(x) := f(x− τ(x)):

|||ΦW (Fτf)− ΦW (f)||| ≤ C
(
2−J‖τ‖∞ + J‖Dτ‖∞ + ‖D2τ‖∞

)
‖f‖W ,

where ‖ · ‖W is a wavelet-dependent norm.
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Generalizations

The basic operations between consecutive layers

f f
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| · | | · | | · | NL NL NL

Pool Pool Pool

General DCNs employ a wide variety of filters gλ

pre-specified and structured (e.g., wavelets [Serre et al., 2005 ])

pre-specified and unstructured (e.g., random filters [Jarrett et
al., 2009 ])

learned in a supervised [Huang and LeCun, 2006 ] or an
unsupervised [Ranzato et al., 2007 ] fashion
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General DCNs employ a wide variety of non-linearities

modulus [Mutch and Lowe, 2006 ]

hyperbolic tangent [Huang and LeCun, 2006 ]

rectified linear unit [Nair and Hinton, 2010 ]

logistic sigmoid [Glorot and Bengio, 2010 ]



Generalizations

The basic operations between consecutive layers

f f
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General DCNs employ intra-layer pooling

sub-sampling [Pinto et al., 2008 ]

average pooling [Jarrett et al., 2009 ]

max-pooling [Ranzato et al., 2007 ]



Generalizations

The basic operations between consecutive layers

f f

ψλ(p) ψλ(q) ψλ(r) gλ(p) gλ(q) gλ(r)

| · | | · | | · | NL NL NL

Pool Pool Pool

General DCNs employ different filters, non-linearities, and pooling
operations in different network layers [LeCun et al., 2015 ]



Generalizations

The basic operations between consecutive layers

f f

ψλ(p) ψλ(q) ψλ(r) gλ(p) gλ(q) gλ(r)

φJ φJ φJ

| · | | · | | · | NL NL NL

Pool Pool Pool

χ χ χ

General DCNs employ various output filters [He et al., 2015 ]



General filters: Semi-discrete frames

Observation: Convolutions yield semi-discrete frame coefficients

(f ∗ gλ)(b) = 〈f, gλ(b− ·)〉 = 〈f, TbIgλ〉, (λ, b) ∈ Λ× Rd

Definition

Let {gλ}λ∈Λ ⊆ L1(Rd) ∩ L2(Rd) be indexed by a countable set Λ.
The collection

ΨΛ :=
{
TbIgλ

}
(λ,b)∈Λ×Rd

is a semi-discrete frame for L2(Rd), if there exist constants A,B > 0
such that

A‖f‖22 ≤
∑
λ∈Λ

∫
Rd
|〈f, TbIgλ〉|2db =

∑
λ∈Λ

‖f ∗ gλ‖22 ≤ B‖f‖22,

for all f ∈ L2(Rd).
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∑
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∫
Rd
|〈f, TbIgλ〉|2db =

∑
λ∈Λ

‖f ∗ gλ‖22 ≤ B‖f‖22

Semi-discrete frames are rooted in continuous frame theory
[Antoine et al., 1993 ], [Kaiser, 1994 ]

Sampling the translation parameter b ∈ Rd in (TbIgλ) on Zd
leads to shift-invariant frames [Ron and Shen, 1995 ]

The frame condition can equivalently be expressed as

A ≤
∑
λ∈Λ

|ĝλ(ω)|2 ≤ B, a.e. ω ∈ Rd

Structured semi-discrete frames: Weyl-Heisenberg frames,
wavelets, (α)-curvelets, shearlets, and ridgelets

Λ is typically a collection of scales, directions, or frequency shifts



General filters: Semi-discrete frames

A‖f‖22 ≤
∑
λ∈Λ

∫
Rd
|〈f, TbIgλ〉|2db =

∑
λ∈Λ

‖f ∗ gλ‖22 ≤ B‖f‖22

Semi-discrete frames are rooted in continuous frame theory
[Antoine et al., 1993 ], [Kaiser, 1994 ]

Sampling the translation parameter b ∈ Rd in (TbIgλ) on Zd
leads to shift-invariant frames [Ron and Shen, 1995 ]

The frame condition can equivalently be expressed as

A ≤
∑
λ∈Λ
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General non-linearities

Observation: Essentially all non-linearities M : L2(Rd)→ L2(Rd)
employed in the deep learning literature are

i) pointwise, i.e.,

(Mf)(x) = ρ(f(x)), x ∈ Rd,

for some ρ : C→ C,

ii) Lipschitz-continuous, i.e.,

‖M(f)−M(h)‖ ≤ L‖f − h‖, ∀ f, h,∈ L2(Rd),

for some L > 0,

iii) satisfy M(f) = 0 for f = 0.



Incorporating pooling by sub-sampling

Pooling by sub-sampling can be emulated in continuous-time by the
(unitary) dilation operator

f 7→ Rd/2f(R ·), f ∈ L2(Rd),

where R ≥ 1 is the sub-sampling factor.



Different modules in different layers

Module-sequence Ω =
(
(Ψn,Mn, Rn)

)
n∈N

i) in the n-th network layer, replace the wavelet-modulus
convolution operation |f ∗ ψλ| by

Un[λn]f := Rd/2n (Mn(f ∗ gλn))(Rn·)

ii) extend the operator Un[λn] to paths on index sets

q = (λ1, λ2, . . . , λn) ∈ Λ1 × Λ2 × · · · × Λn := Λn1 , n ∈ N,

according to

U [q]f :=Un[λn] · · ·U2[λ2]U1[λ1]f
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Output filters

[Mallat, 2012 ] employed the same low-pass filter φJ in every
network layer n to generate the output according to

Φn
W (f) :=

{
| · · · | |f ∗ψλ(1) |∗ψλ(2) | · · · ∗ψλ(n) |∗φJ

}
λ(1),...,λ(n)∈ΛW

Here, designate one of the atoms {gλn}λn∈Λn as the output-
generating atom χn−1 := gλ∗n , λ∗n ∈ Λn, of the (n− 1)-th layer.

⇒ The atoms {gλn}λn∈Λn\{λ∗n} ∪ {χn−1} are used across two
consecutive layers!
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Generalized feature extractor

Features generated in the n-th network layer
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Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that Ω =
(
(Ψn,Mn, Rn)

)
n∈N satisfies the admissibility

condition Bn ≤ min{1, L−2
n }, for all n ∈ N. If there exists a constant

K > 0 such that

|χ̂n(ω)||ω| ≤ K, a.e. ω ∈ Rd, ∀n ∈ N0,

then

|||Φn
Ω(Ttf)− Φn

Ω(f)||| ≤ 2π|t|K
R1 . . . Rn

‖f‖2,

for all f ∈ L2(Rd), t ∈ Rd, n ∈ N.



Vertical translation invariance

The admissibility condition

Bn ≤ min{1, L−2
n }, ∀n ∈ N,

is easily satisfied by normalizing Ψn.

The decay condition

|χ̂n(ω)||ω| ≤ K, a.e. ω ∈ Rd, ∀n ∈ N0,

is satisfied, e.g., if supn∈N0
{‖χn‖1 + ‖∇χn‖1} <∞.

If, in addition, lim
n→∞

R1 ·R2 · . . . ·Rn =∞, then

lim
n→∞

|||Φn
Ω(Ttf)− Φn

Ω(f)||| = 0, ∀f ∈ L2(Rd), ∀t ∈ Rd.
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Philosophy behind invariance results

Mallat’s “horizontal” translation invariance:

lim
J→∞

|||ΦW (Ttf)− ΦW (f)||| = 0, ∀f ∈ L2(Rd), ∀t ∈ Rd

features become invariant in every network layer, but needs
J →∞
applies to wavelet transform and modulus non-linearity without
pooling

“Vertical” translation invariance:

lim
n→∞

|||Φn
Ω(Ttf)− Φn

Ω(f)||| = 0, ∀f ∈ L2(Rd), ∀t ∈ Rd

features become more invariant with increasing network depth

applies to general filters, general non-linearities, and pooling
through sub-sampling
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pooling

“Vertical” translation invariance:

lim
n→∞

|||Φn
Ω(Ttf)− Φn

Ω(f)||| = 0, ∀f ∈ L2(Rd), ∀t ∈ Rd

features become more invariant with increasing network depth

applies to general filters, general non-linearities, and pooling
through sub-sampling
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Deformation sensitivity bounds

[Mallat, 2012 ] proved that ΦW is stable w.r.t. non-linear deforma-
tions (Fτf)(x) = f(x− τ(x)) according to

|||ΦW (Fτf)−ΦW (f)||| ≤ C
(
2−J‖τ‖∞+J‖Dτ‖∞+ ‖D2τ‖∞

)
‖f‖W ,

where HW := { f ∈ L2(Rd) | ‖f‖W <∞} with

‖f‖W :=

∞∑
n=0

( ∑
q∈(ΛW )n1

‖U [q]‖22
)1/2



Deformation sensitivity for signal classes

Consider (Fτf)(x) = f(x− τ(x)) = f(x− e−x2)

x

f1(x), (Fτf1)(x)

x

f2(x), (Fτf2)(x)

For given τ the amount of deformation induced
can depend drastically on f ∈ L2(Rd)



Deformation sensitivity bounds: Band-limited signals

Theorem (Wiatowski and HB, 2015)

Assume that Ω =
(
(Ψn,Mn, Rn)

)
n∈N satisfies the admissibility

condition Bn ≤ min{1, L−2
n }, for all n ∈ N. There exists a constant

C > 0 (that does not depend on Ω) such that for all

f ∈ {f ∈ L2(Rd) | supp(f̂) ⊆ BR(0)}

and all τ ∈ C1(Rd,Rd) with ‖Dτ‖∞ ≤ 1
2d , it holds that

|||ΦΩ(Fτf)− ΦΩ(f)||| ≤ CR‖τ‖∞‖f‖2.



Deformation sensitivity bounds: Cartoon functions

... and what about non-band-limited signals?

Image credit: middle [Mnih et al., 2015 ], right [Silver et al., 2016 ]



Deformation sensitivity bounds: Cartoon functions

... and what about non-band-limited signals?

Image credit: middle [Mnih et al., 2015 ], right [Silver et al., 2016 ]

Take into account structural properties of natural images.

⇒ consider cartoon functions [Donoho, 2001 ]



Deformation sensitivity bounds: Cartoon functions

... and what about non-band-limited signals?

Image credit: middle [Mnih et al., 2015 ], right [Silver et al., 2016 ]

The class of cartoon functions of maximal size K > 0:

CKCART := {f1 + 1Bf2 | fi ∈ L2(Rd) ∩ C1(Rd,C), i = 1, 2,

|∇fi(x)| ≤ K(1 + |x|2)−d/2, vold−1(∂B) ≤ K, ‖f2‖∞ ≤ K}



Deformation sensitivity bounds: Cartoon functions

Theorem (Grohs et al., 2016)

Assume that Ω =
(
(Ψn,Mn, Rn)

)
n∈N satisfies the admissibility

condition Bn ≤ min{1, L−2
n }, for all n ∈ N. For every K > 0 there

exists a constant CK > 0 (that does not depend on Ω) such that for
all f ∈ CKCART and all τ ∈ C1(Rd,Rd) with ‖τ‖∞ < 1

2 and
‖Dτ‖∞ ≤ 1

2d , it holds that

|||ΦΩ(Fτf)− ΦΩ(f)||| ≤ CK‖τ‖1/2∞ .



Deformation sensitivity bounds: Lipschitz functions

Cartoon functions reduce to Lipschitz functions
upon setting f2 = 0 in f1 + 1Bf2 ∈ CKCART

Corollary (Grohs et al., 2016)

Assume that Ω =
(
(Ψn,Mn, Rn)

)
n∈N satisfies the admissibility

condition Bn ≤ min{1, L−2
n }, for all n ∈ N. For every K > 0 there

exists a constant CK > 0 (that does not depend on Ω) such that for
all

f ∈
{
f ∈ L2(Rd) | f Lipschitz-continuous, |∇fi(x)| ≤ K(1+|x|2)−d/2

}
and all τ ∈ C1(Rd,Rd) with ‖τ‖∞ < 1

2 and ‖Dτ‖∞ ≤ 1
2d , it holds

that
|||ΦΩ(Fτf)− ΦΩ(f)||| ≤ CK‖τ‖∞.



... and what about textures?

neither band-limited, nor a cartoon function,
nor Lipschitz-continuous
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neither band-limited, nor a cartoon function,
nor Lipschitz-continuous



Philosophy behind deformation stability/sensitivity bounds

Mallat’s deformation stability bound:

|||ΦW (Fτf)−ΦW (f)||| ≤ C
(
2−J‖τ‖∞+J‖Dτ‖∞+‖D2τ‖∞

)
‖f‖W ,

for all f ∈ HW ⊆ L2(Rd)

The signal class HW and the corresponding norm ‖ · ‖W depend
on the mother wavelet (and hence the network)

Our deformation sensitivity bound:

|||ΦΩ(Fτf)− ΦΩ(f)||| ≤ CC‖τ‖α∞, ∀f ∈ C ⊆ L2(Rd)

The signal class C (band-limited functions or cartoon functions)
is independent of the network



Philosophy behind deformation stability/sensitivity bounds

Mallat’s deformation stability bound:

|||ΦW (Fτf)−ΦW (f)||| ≤ C
(
2−J‖τ‖∞+J‖Dτ‖∞+‖D2τ‖∞

)
‖f‖W ,

for all f ∈ HW ⊆ L2(Rd)

Signal class description complexity implicit via norm ‖ · ‖W

Our deformation sensitivity bound:

|||ΦΩ(Fτf)− ΦΩ(f)||| ≤ CC‖τ‖α∞, ∀f ∈ C ⊆ L2(Rd)

Signal class description complexity explicit via CC
R-band-limited functions: CC = O(R)
cartoon functions of maximal size K: CC = O(K3/2)
K-Lipschitz functions CC = O(K)



Philosophy behind deformation stability/sensitivity bounds

Mallat’s deformation stability bound:

|||ΦW (Fτf)−ΦW (f)||| ≤ C
(
2−J‖τ‖∞+J‖Dτ‖∞+‖D2τ‖∞

)
‖f‖W ,

for all f ∈ HW ⊆ L2(Rd)

Our deformation sensitivity bound:

|||ΦΩ(Fτf)− ΦΩ(f)||| ≤ CC‖τ‖α∞, ∀f ∈ C ⊆ L2(Rd)

Decay rate α > 0 of the deformation error is signal-class-
specific (band-limited functions: α = 1, cartoon functions:
α = 1

2 , Lipschitz functions: α = 1)



Philosophy behind deformation stability/sensitivity bounds

Mallat’s deformation stability bound:

|||ΦW (Fτf)−ΦW (f)||| ≤ C
(
2−J‖τ‖∞+J‖Dτ‖∞+‖D2τ‖∞

)
‖f‖W ,

for all f ∈ HW ⊆ L2(Rd)

The bound depends explicitly on higher order derivatives of τ

Our deformation sensitivity bound:

|||ΦΩ(Fτf)− ΦΩ(f)||| ≤ CC‖τ‖α∞, ∀f ∈ C ⊆ L2(Rd)

The bound implicitly depends on derivatives of τ via the
condition ‖Dτ‖∞ ≤ 1

2d



Philosophy behind deformation stability/sensitivity bounds

Mallat’s deformation stability bound:

|||ΦW (Fτf)−ΦW (f)||| ≤ C
(
2−J‖τ‖∞+J‖Dτ‖∞+‖D2τ‖∞

)
‖f‖W ,

for all f ∈ HW ⊆ L2(Rd)

The bound is coupled to horizontal translation invariance

lim
J→∞

|||ΦW (Ttf)− ΦW (f)||| = 0, ∀f ∈ L2(Rd), ∀t ∈ Rd

Our deformation sensitivity bound:

|||ΦΩ(Fτf)− ΦΩ(f)||| ≤ CC‖τ‖α∞, ∀f ∈ C ⊆ L2(Rd)

The bound is decoupled from vertical translation invariance

lim
n→∞

|||Φn
Ω(Ttf)− Φn

Ω(f)||| = 0, ∀f ∈ L2(Rd), ∀t ∈ Rd



Proof sketch: Decoupling

|||ΦΩ(Fτf)− ΦΩ(f)||| ≤ CC‖τ‖α∞, ∀f ∈ C ⊆ L2(Rd)

1) Lipschitz continuity:

|||ΦΩ(f)− ΦΩ(h)||| ≤ ‖f − h‖2, ∀f, h ∈ L2(Rd),

established through (i) frame property of Ψn, (ii) Lipschitz
continuity of non-linearities, and (iii) admissibility condition
Bn ≤ min{1, L−2

n }

2) Signal-class-specific deformation sensitivity bound:

‖Fτf − f‖2 ≤ CC‖τ‖α∞, ∀f ∈ C ⊆ L2(Rd)

3) Combine 1) and 2) to get

|||ΦΩ(Fτf)− ΦΩ(f)||| ≤ ‖Fτf − f‖2 ≤ CC‖τ‖α∞,

for all f ∈ C ⊆ L2(Rd)
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Noise robustness

Lipschitz continuity of ΦΩ according to

|||ΦΩ(f)− ΦΩ(h)||| ≤ ‖f − h‖2, ∀f, h ∈ L2(Rd),

also implies robustness w.r.t. additive noise η ∈ L2(Rd) according to

|||ΦΩ(f + η)− ΦΩ(f)||| ≤ ‖η‖2



Energy conservation

It is desirable to have

f 6= 0 ⇒ Φ(f) 6= 0,

or even better

|||Φ(f)||| ≥ AΦ‖f‖2, ∀f ∈ L2(Rd),

for some AΦ > 0.

[Waldspurger, 2015 ] proved—under analyticity assumptions on the
mother wavelet—that for real-valued signals f ∈ L2(Rd), ΦW

conserves energy according to

|||ΦW (f)||| = ‖f‖2
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Energy conservation

Theorem (Grohs et al., 2016)

Let Ω =
(
(Ψn, | · |, 1)

)
n∈N be a module-sequence employing modulus

non-linearities and no sub-sampling. For every n ∈ N, let the atoms
of Ψn satisfy the following conditions:

i)
∑

λn∈Λn\{λ∗n} |ĝλn(ω)|2 + |χ̂n−1(ω)|2 = 1, a.e. ω ∈ Rd

ii)
∑

λn∈Λn\{λ∗n} |ĝλn(ω)|2 = 0, a.e. ω ∈ Bδn(0), for some δn > 0

iii) all atoms gλn are analytic.

Then,
|||ΦΩ(f)||| = ‖f‖2, ∀f ∈ L2(Rd)

Various structured frames satisfy conditions i)-iii)
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λn∈Λn\{λ∗n} |ĝλn(ω)|2 + |χ̂n−1(ω)|2 = 1, a.e. ω ∈ Rd

ii)
∑
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Proof sketch: Energy conservation
or “What does the modulus non-linearity do?”

ω

f̂(ω)

· · · · · ·
ĝλ χ̂

ω

(f̂ · ĝλ)(ω)
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Proof sketch: Energy conservation
or “What does the modulus non-linearity do?”

ω

f̂(ω)

· · · · · ·
ĝλ χ̂

ω

(f̂ · ĝλ)(ω)

ω

Rf̂ ·ĝλ(ω)

|(f ∗ gλ)(x)|2 R
f̂ ·ĝλ

(ω)

|f ∗ gλ(x)|2 R
f̂ ·ĝλ

(ω)



Proof sketch: Energy conservation
or “What does the modulus non-linearity do?”

ω

f̂(ω)

· · · · · ·
ĝλ χ̂

ω

(f̂ · ĝλ)(ω)

ω

Rf̂ ·ĝλ(ω)

χ̂

|f ∗ gλ|2 ∗ χ =

|f ∗ gλ|2 ∗ χ =



Two Meta–Theorems

Meta–Theorem

Vertical translation invariance and Lipschitz continuity (hence by
decoupling also deformation insensitivity) are guaranteed by the
network structure per se rather than the specific convolution kernels,
non-linearities, and pooling operations.

Meta–Theorem

For networks employing the modulus non-linearity and no intra-layer
pooling, energy conservation is guaranteed for quite general
convolution kernels.
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Meta–Theorem

Vertical translation invariance and Lipschitz continuity (hence by
decoupling also deformation insensitivity) are guaranteed by the
network structure per se rather than the specific convolution kernels,
non-linearities, and pooling operations.

Meta–Theorem

For networks employing the modulus non-linearity and no intra-layer
pooling, energy conservation is guaranteed for quite general
convolution kernels.



Deep Frame Net

Open source software:

MATLAB: http://www.nari.ee.ethz.ch/commth/research

Python: Coming soon!

http://www.nari.ee.ethz.ch/commth/research


The Mathematics of Deep Learning
Part 2: Discrete-time Theory

Helmut Bőlcskei

Department of Information Technology and Electrical Engineering

June 2016

joint work with Thomas Wiatowski, Michael Tschannen, and Philipp Grohs



Continuous-time theory

[Mallat, 2012 ] and [Wiatowski and HB, 2015 ] developed a
continuous-time theory for feature extraction through DCNs:

translation invariance results for L2(Rd)-functions

deformation sensitivity bounds for signal classes C ⊆ L2(Rd)

energy conservation for L2(Rd)-functions



Practice is digital

In practice ... we need to handle discrete data!

f = ∈ Rn×n



Practice is digital

In practice ... a wide variety of network architectures is used!

class probabilities [LeCun et al., 1990 ]

f

|f ∗ g1|

||f ∗ g1| ∗ h1|

|f ∗ gn|

||f ∗ gn| ∗ hm|



Practice is digital

In practice ... a wide variety of network architectures is used!

f

|f ∗ g1|

|f ∗ g1|

||f ∗ g1| ∗ h1|

||f ∗ g1| ∗ h1| ∗ µ

|||f ∗ g1| ∗ h1| ∗ k1|

|f ∗ gm|

|f ∗ gm|

||f ∗ gm| ∗ hn|

||f ∗ gm| ∗ hn| ∗ µ

|||f ∗ gm| ∗ hn| ∗ kp|

f ∗ ϕlow



Architecture of general DCNs

The basic operations between consecutive layers

f

g1 g2 gn· · ·

NL NL NL

Pool Pool Pool

DCNs employ a wide variety of filters gk

pre-specified and structured (e.g., wavelets [Serre et al., 2005 ])

pre-specified and unstructured (e.g., random filters [Jarrett et
al., 2009 ])

learned in a supervised [Huang and LeCun, 2006 ] or an
unsupervised [Ranzato et al., 2007 ] fashion



Architecture of general DCNs

The basic operations between consecutive layers

f

g1 g2 gn· · ·

NL NL NL

Pool Pool Pool

DCNs employ a wide variety of non-linearities

modulus [Mutch and Lowe, 2006 ]

hyperbolic tangent [Huang and LeCun, 2006 ]

rectified linear unit [Nair and Hinton, 2010 ]

logistic sigmoid [Glorot and Bengio, 2010 ]



Architecture of general DCNs

The basic operations between consecutive layers

f

g1 g2 gn· · ·

NL NL NL

Pool Pool Pool

DCNs employ pooling

sub-sampling [Pinto et al., 2008 ]

average pooling [Jarrett et al., 2009 ]

max-pooling [Ranzato et al., 2007 ]



Architecture of general DCNs

The basic operations between consecutive layers

f

g1 g2 gn· · ·

NL NL NL

Pool Pool Pool

DCNs employ different filters, non-linearities, and pooling operations
in different network layers [LeCun et al., 2015 ]



Architecture of general DCNs

f

g1 g2 gn· · ·

NL NL NL

Pool Pool Pool

χ χ χ

Which layers contribute to the network’s output?

the last layer only (e.g., class probabilities [LeCun et al., 1990 ])

subset of layers (e.g., shortcut connections [He et al., 2015 ])

all layers (e.g., low-pass filtering [Bruna and Mallat, 2013 ])



Challenges

Challenges for discrete theory:

flexible architectures

signals of varying dimensions are propagated through the network

how to incorporate general pooling operators into the theory?

can not rely on asymptotics (finite network depth) to prove
network properties (e.g., translation invariance)

nature is analog

what are appropriate signal classes to be considered?



Challenges

Challenges for discrete theory:

flexible architectures

signals of varying dimensions are propagated through the network

how to incorporate general pooling operators into the theory?

can not rely on asymptotics (finite network depth) to prove
network properties (e.g., translation invariance)

nature is analog

what are appropriate signal classes to be considered?



Challenges

Challenges for discrete theory:

flexible architectures

signals of varying dimensions are propagated through the network

how to incorporate general pooling operators into the theory?

can not rely on asymptotics (finite network depth) to prove
network properties (e.g., translation invariance)

nature is analog

what are appropriate signal classes to be considered?



Challenges

Challenges for discrete theory:

flexible architectures

signals of varying dimensions are propagated through the network

how to incorporate general pooling operators into the theory?

can not rely on asymptotics (finite network depth) to prove
network properties (e.g., translation invariance)

nature is analog

what are appropriate signal classes to be considered?



Challenges

Challenges for discrete theory:

flexible architectures

signals of varying dimensions are propagated through the network

how to incorporate general pooling operators into the theory?

can not rely on asymptotics (finite network depth) to prove
network properties (e.g., translation invariance)

nature is analog

what are appropriate signal classes to be considered?



Challenges

Challenges for discrete theory:

flexible architectures

signals of varying dimensions are propagated through the network

how to incorporate general pooling operators into the theory?

can not rely on asymptotics (finite network depth) to prove
network properties (e.g., translation invariance)

nature is analog

what are appropriate signal classes to be considered?



Definitions

Signal space

HN := {f : Z→ C | f [n] = f [n+N ], ∀n ∈ Z}

p-Norm

‖f‖p :=
( ∑
n∈IN

|f [n]|p
)1/p

, IN := {0, . . . , N − 1}

Circular convolution

(f ∗ g)[n] :=
∑
k∈IN

f [k]g[n− k], f, g ∈ HN

Discrete Fourier transform

f̂ [k] :=
∑
n∈IN

f [n]e−2πikn/N , f ∈ HN



Filters: Shift-invariant frames for HN

Observation: Convolutions yield shift-invariant frame coefficients

(f ∗ gλ)[n] = 〈f, gλ(n− ·)〉 = 〈f, TnIgλ〉, (λ, n) ∈ Λ× IN

Definition

Let {gλ}λ∈Λ ⊆ HN be indexed by a finite set Λ. The collection

ΨΛ :=
{
TnIgλ

}
(λ,n)∈Λ×IN

is a shift-invariant frame for HN , if there exist constants A,B > 0
such that

A‖f‖22 ≤
∑
λ∈Λ

∑
n∈IN

|〈f, TnIgλ〉|2 =
∑
λ∈Λ

‖f ∗ gλ‖22 ≤ B‖f‖22,

for all f ∈ HN
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Filters: Shift-invariant frames for HN

A‖f‖22 ≤
∑
λ∈Λ

∑
n∈IN

|〈f, TnIgλ〉|2 =
∑
λ∈Λ

‖f ∗ gλ‖22 ≤ B‖f‖22

Shift-invariant frames for L2(Rd) [Ron and Shen, 1995 ], for
`2(Z) [HB et al., 1998 ] and [Cvetković and Vetterli, 1998 ]

The frame condition can equivalently be expressed as

A ≤
∑
λ∈Λ

|ĝλ[k]|2 ≤ B, ∀ k ∈ IN

Frame lower bound A > 0 guarantees that no essential features
of f are “lost” in the network

Structured shift-invariant frames: Weyl-Heisenberg frames,
wavelets, (α)-curvelets, shearlets, and ridgelets

Λ is typically a collection of scales, directions, or frequency shifts
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Frame lower bound A > 0 guarantees that no essential features
of f are “lost” in the network

Structured shift-invariant frames: Weyl-Heisenberg frames,
wavelets, (α)-curvelets, shearlets, and ridgelets

Λ is typically a collection of scales, directions, or frequency shifts
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How to generate network output in the d-th layer?
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How to generate network output in the d-th layer?
Convolution with general χd ∈ HNd+1

gives flexibility!



Network output

A wide variety of architectures is encompassed, e.g.,

output: none
⇒ χd = 0

output: propagated signals | · · · |f ∗ g
λ
(m)
1

| ∗ · · · ∗ g
λ
(n)
d

|
⇒ χd = δ

output: filtered signals
⇒ χd = filter (e.g., low-pass)

⇒ Ψd+1 ∪ {TnIχd}n∈INd+1
forms a shift-invariant frame for HNd+1

Start with

Ad+1 ≤
∑

λd+1∈Λd+1

|ĝλd+1
[k]|2 ≤ Bd+1, ∀ k ∈ INd+1

,

and note that

Ad+1 ≤ |χ̂d[k]|2 +
∑

λd+1∈Λd+1

|ĝλd+1
[k]|2 ≤ B′d+1, ∀ k ∈ INd+1
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Non-linearities

Observation: Essentially all non-linearities ρ : HN → HN employed
in the deep learning literature are

i) pointwise, i.e.,

(ρf)[n] = ρ(f [n]), n ∈ IN ,

ii) Lipschitz-continuous, i.e.,

‖ρ(f)− ρ(h)‖2 ≤ L‖f − h‖2, ∀ f, h ∈ HN ,

for some L > 0



Pooling P : HN → HN/S

Pooling: Combining nearby values / picking one representative value

Averaging:

(Pf)[n] =

Sn+S−1∑
k=Sn

αk−Snf [k]

weights {αk}S−1
k=0 can be learned [LeCun et al., 1998 ] or be

pre-specified [Pinto et al., 2008 ]

uniform averaging corresponds to αk = 1
S , for k ∈ {0, . . . , S− 1}

n

f [n]
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Pooling P : HN → HN/S

Pooling: Combining nearby values / picking one representative value

Maximization:

(Pf)[n] = max
k∈{nS,...,nS+S−1}

|f [k]|

n

f [n]
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Pooling P : HN → HN/S

Pooling: Combining nearby values / picking one representative value

Sub-sampling:

(Pf)[n] = f [Sn]

S = 1 corresponds to “no pooling”

n

f [n]
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Pooling

Common to all pooling operators Pd:

Lipschitz continuity with Lipschitz constant Rd:

averaging: Rd = S
1/2
d maxk∈{0,...,Sd−1} |αd

k|
maximization: Rd = 1

sub-sampling: Rd = 1

Pooling factor Sd:

“size” of the neighborhood values are combined in

dimensionality-reduction from d-th to (d+ 1)-th layer, i.e.,
Nd+1 = Nd

Sd
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Different modules in different layers

Module-sequence Ω =
(
(Ψd, ρd, Pd)

)D
d=1

i) in the d-th network layer, we compute

Ud[λd]f := Pd(ρd(f ∗ gλd))

ii) extend the operator Ud[λd] to paths on index sets

q = (λ1, λ2, . . . , λd) ∈ Λ1×Λ2×· · ·×Λd := Λd1, d ∈ {1, . . . , D},

according to

U [q]f :=Ud[λd] · · ·U2[λ2]U1[λ1]f
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Local and global properties

Features generated in the d-th network layer

Φd
Ω(f) :=

{
(U [q]f) ∗ χd

}
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Global properties: Lipschitz continuity

Theorem (Wiatowski et al., 2016)

Assume that Ω =
(
(Ψd, ρd, Pd)

)D
d=1

satisfies the admissibility

condition Bd ≤ min{1, R−2
d L−2

d }, for all d ∈ {1, . . . , D}. Then, the
feature extractor is Lipschitz-continuous, i.e.,

|||ΦΩ(f)− ΦΩ(h)||| ≤ ‖f − h‖2, ∀f, h ∈ HN1 .
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... this implies ...

robustness w.r.t. additive noise η ∈ L2(Rd) according to

|||ΦΩ(f + η)− ΦΩ(f)||| ≤ ‖η‖2, ∀f ∈ HN1

an upper bound on the feature vector’s energy according to

|||ΦΩ(f)||| ≤ ‖f‖2, ∀f ∈ HN1
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Global properties: Lipschitz continuity

Theorem (Wiatowski et al., 2016)

Assume that Ω =
(
(Ψd, ρd, Pd)

)D
d=1

satisfies the admissibility

condition Bd ≤ min{1, R−2
d L−2

d }, for all d ∈ {1, . . . , D}. Then, the
feature extractor is Lipschitz-continuous, i.e.,

|||ΦΩ(f)− ΦΩ(h)||| ≤ ‖f − h‖2, ∀f, h ∈ HN1 .

The admissibility condition

Bd ≤ min{1, R−2
d L−2

d }, ∀d ∈ {1, . . . , D},

is easily satisfied by normalizing the frame elements in Ψd



Global properties: Deformation sensitivity bounds

Network output should be independent of cameras (of different
resolutions), and insensitive to small acquisition jitters

⇒ Want to analyze sensitivity w.r.t. continuous-time
deformations

(Fτf)(x) = f(x− τ(x)), x ∈ R,

and hence consider

(Fτf)[n] = f(n/N − τ(n/N)), n ∈ IN
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Goal: Deformation sensitivity bounds for practically relevant signal
classes

Image credit: middle [Mnih et al., 2015 ], right [Silver et al., 2016 ]
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Goal: Deformation sensitivity bounds for practically relevant signal
classes

Image credit: middle [Mnih et al., 2015 ], right [Silver et al., 2016 ]

Take into account structural properties of natural images

⇒ consider cartoon functions [Donoho, 2001 ]



Global properties: Deformation sensitivity bounds

Goal: Deformation sensitivity bounds for practically relevant signal
classes

Image credit: middle [Mnih et al., 2015 ], right [Silver et al., 2016 ]

Continuous-time [Donoho, 2001 ]:

Cartoon functions of maximal variation K > 0:

CKCART := {c1 + 1[a,b]c2 | |ci(x)− ci(y)| ≤ K|x− y|,
∀x, y ∈ R, i = 1, 2, ‖c2‖∞ ≤ K}



Global properties: Deformation sensitivity bounds

Goal: Deformation sensitivity bounds for practically relevant signal
classes

Image credit: middle [Mnih et al., 2015 ], right [Silver et al., 2016 ]

Discrete-time [Wiatowski et al., 2016 ]:

Sampled cartoon functions of length N and maximal variationK > 0:

CN,KCART :=
{
f [n] = c(n/N), n ∈ IN

∣∣∣ c = (c1 + 1[a,b]c2) ∈ CKCART

}



Global properties: Deformation sensitivity bounds

Theorem (Wiatowski et al., 2016)

Assume that Ω =
(
(Ψd, ρd, Pd)

)D
d=1

satisfies the admissibility

condition Bd ≤ min{1, R−2
d L−2

d }, for all d ∈ {1, . . . , D}. For every
N1 ∈ N, every K > 0, and every τ : [0, 1]→ [−1, 1], it holds that

|||ΦΩ(Fτf)− ΦΩ(f)||| ≤ 4KN
1/2
1 ‖τ‖1/2∞ ,

for all f ∈ CN1,K
CART .



Philosophy behind deformation sensitivity bounds

|||ΦΩ(Fτf)− ΦΩ(f)||| ≤ 4KN
1/2
1 ‖τ‖1/2∞ , ∀f ∈ CN1,K

CART

Bound depends explicitly on the analog signal’s description
complexity via K and N1

Lipschitz exponent α = 1
2 for ‖τ‖∞ is signal-class-specific

(larger Lipschitz exponents for smoother functions)

Particularizing to translations: τt(x) = t, x ∈ [0, 1], results in
translation sensitivity bound according to

|||ΦΩ(Fτtf)− ΦΩ(f)||| ≤ 4KN
1/2
1 |t|1/2, ∀f ∈ CN1,K

CART
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Global properties: Energy conservation

Theorem (Wiatowski et al., 2016)

Let Ω =
(
(Ψn, | · |, P sub

S=1)
)
n∈N be a module-sequence employing

modulus non-linearities and no pooling. For every d ∈ {1, . . . , D}, let
the atoms of Ψd satisfy∑

λd∈Λd

|ĝλd [k]|2 + |χ̂d−1[k]|2 = 1, ∀k ∈ INd .

Let the output-generating atom of the last layer be the delta
function, i.e., χD−1 = δ, then

|||ΦΩ(f)||| = ‖f‖2, ∀f ∈ HN1 .



Local properties
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Local properties: Lipschitz continuity

Theorem (Wiatowski et al., 2016)

The features generated in the d-th network layer are Lipschitz-
continuous with Lipschitz constant

LdΩ := ‖χd‖1
(∏d

k=1BkL
2
kR

2
k

)1/2
,

i.e.,
|||Φd

Ω(f)− Φd
Ω(h)||| ≤ LdΩ‖f − h‖2, ∀f, h ∈ HN1 .
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determines the noise sensitivity of Φd
Ω(f) according to

|||Φd
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Ω(f)||| ≤ LdΩ‖η‖2, ∀f ∈ HN1



Local properties: Lipschitz continuity

Theorem (Wiatowski et al., 2016)

The features generated in the d-th network layer are Lipschitz-
continuous with Lipschitz constant

LdΩ := ‖χd‖1
(∏d

k=1BkL
2
kR

2
k

)1/2
,

i.e.,
|||Φd

Ω(f)− Φd
Ω(h)||| ≤ LdΩ‖f − h‖2, ∀f, h ∈ HN1 .

The Lipschitz constant LdΩ

impacts the energy of Φd
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|||Φd
Ω(f)||| ≤ LdΩ‖f‖2, ∀f ∈ HN1
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Local properties: Lipschitz continuity

Theorem (Wiatowski et al., 2016)

The features generated in the d-th network layer are Lipschitz-
continuous with Lipschitz constant

LdΩ := ‖χd‖1
(∏d
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)1/2
,

i.e.,
|||Φd

Ω(f)− Φd
Ω(h)||| ≤ LdΩ‖f − h‖2, ∀f, h ∈ HN1 .

The Lipschitz constant LdΩ

is hence a characteristic constant for the features Φd
Ω(f)

generated in the d-th network layer



Local properties: Lipschitz continuity

LdΩ =
‖χd‖1B

1/2
d LdRd

‖χd−1‖1
Ld−1

Ω

If ‖χd‖1 < ‖χd−1‖1
B

1/2
d LdRd

, then LdΩ < Ld−1
Ω , and hence

the features Φd
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⇒ Tradeoff between deformation sensitivity and energy preservation!
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Local properties: Covariance-Invariance

Theorem (Wiatowski et al., 2016)

Let {Sk}dk=1 be pooling factors. The features generated in the d-th
network layer are translation-covariant according to

Φd
Ω(Tmf) = T m

S1...Sd
Φd

Ω(f),

for all f ∈ HN1 and all m ∈ Z with m
S1...Sd

∈ Z.

Translation covariance on signal grid induced by the pooling
factors

In the absence of pooling, i.e., Sk = 1, for k ∈ {1, . . . , d}, we
get translation covariance w.r.t. the fine grid the input signal
f ∈ HN1 lives on
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Experiments

The implementation in a nutshell

Filters: Tensorized wavelets

extract visual features w.r.t. 3 directions (horizontal, vertical,
diagonal)

efficiently implemented using the algorithme à trous
[Holschneider et al., 1989 ]

Non-linearities: Modulus, rectified linear unit, hyperbolic
tangent, logistic sigmoid

Pooling: no pooling, sub-sampling, max-pooling, average-pooling

Output-generating atoms: Low-pass filters
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Experiment: Handwritten digit classification

Dataset: MNIST database of handwritten digits [LeCun &
Cortes, 1998 ]; 60,000 training and 10,000 test images

Setup for ΦΩ: D = 3 layers; same filters, non-linearities, and
pooling operators in all layers

Classifier: SVM with radial basis function kernel [Vapnik, 1995 ]

Dimensionality reduction: Supervised orthogonal least squares
scheme [Chen et al., 1991 ]



Experiment: Handwritten digit classification

Classification error in percent:

Haar wavelet Bi-orthogonal wavelet
abs ReLU tanh LogSig abs ReLU tanh LogSig

n.p. 0.57 0.57 1.35 1.49 0.51 0.57 1.12 1.22
sub. 0.69 0.66 1.25 1.46 0.61 0.61 1.20 1.18
max. 0.58 0.65 0.75 0.74 0.52 0.64 0.78 0.73
avg. 0.55 0.60 1.27 1.35 0.58 0.59 1.07 1.26

modulus and ReLU perform better than tanh and LogSig

pooling-results (S = 2) are competitive with those without
pooling at significanly lower computational cost

State-of-the-art: 0.43 [Bruna and Mallat, 2013 ]

similar feature extraction network with directional, but non-
separable, wavelets and no pooling
significantly higher computational complexity
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Experiment: Feature importance evaluation

Question: Which features are important in

handwritten digit classification?

detection of facial landmarks (eyes, nose, mouth) through
regression?

Compare importance of features corresponding to (i) different layers,
(ii) wavelet scales, and (iii) wavelet directions.



Experiment: Feature importance evaluation

Setup for ΦΩ:

D = 4 layers; Haar wavelets with J = 3 scales and modulus
non-linearity in every network layer

no pooling in the first layer, average pooling with uniform
weights in the second and third layer (S = 2)
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Handwritten digit classification:

Dataset: MNIST database (10,000 training and 10,000 test
images)

Random forest classifier [Breiman, 2001 ] with 30 trees

Feature importance: Gini importance [Breiman, 1984 ]

Facial landmark detection:

Dataset: Caltech Web Faces database (7092 images; 80% for
training, 20% for testing)

Random forest regressor [Breiman, 2001 ] with 30 trees

Feature importance: Gini importance [Breiman, 1984 ]
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Experiment: Feature importance evaluation

Average cumulative feature importance: Digit classification
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r = 1, and diagonal r = 2 features in layer d



Experiment: Feature importance evaluation

Average cumulative feature importance: Facial landmarks
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Experiment: Feature importance evaluation

Average cumulative feature importance per layer:

left eye right eye nose mouth digits disp. digits

Layer 0 0.020 0.023 0.016 0.014 0.046 0.004
Layer 1 0.629 0.646 0.576 0.490 0.426 0.094
Layer 2 0.261 0.236 0.298 0.388 0.337 0.280
Layer 3 0.090 0.095 0.110 0.108 0.192 0.622

Given a particular machine learning task, it may be attractive to
generate output in individual layers only!
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Deep Frame Net

Open source software:

MATLAB: http://www.nari.ee.ethz.ch/commth/research

Python: Coming soon!

http://www.nari.ee.ethz.ch/commth/research


Thank you

“If you ask me anything I don’t know, I’m not going to answer.”

Y. Berra


