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ABSTRACT 
Data-driven reconstruction of biological networks is a 
crucial step towards making sense of large volumes of 
biological data. While several methods have been 
developed recently for reconstruction of the networks, no 
comprehensive study has been carried out to compare 
these characteristically different methods in terms of their 
performance with regard to important aspects such as 
incomplete data-sets and noisy data. In this paper we have 
applied and compared four methods, viz. least squares 
(LS), principal component regression (PCR), linear matrix 
inequalities (LMI), and Least Absolute Shrinkage and 
Selection Operator (LASSO), on a real data set and a 
synthetic data set with respect to important metrics. This 
comparison gives us an insight into when to choose an 
appropriate approach for reconstruction of networks based 
on a priori properties of experimental data. 
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1. Introduction 
 
Understanding the topology of networks from 
experimental data has recently received considerable 
attention in the recent decade particularly from system 
biologists and researchers in the field of bioinformatics 
and biotechnology [1]. Reconstruction of biological 
networks is a crucial topic in this field due to its role in 
interpretation of biological data. 

Given the importance of network reconstruction, 
various methods have been introduced and are being 
developed for reconstruction of static, dynamic, and 
static-dynamic networks [2-4]. Optimization-based 
approaches such as method of leas-squares [5], 
dimensionality reduction methods such as principal 
components regressions (PCR) and partial least-squares 
(PLS) that are integrated with statistical significant tests 

[6-8], partial-correlation-related [9-11], Bayesian 
networks analysis [12-15], and hybrid methods such as 
“linear matrix inequalities” (LMI) [16] and “Least 
Absolute Shrinkage and Selection Operator” (LASSO)  
[17, 18] are examples of well-developed methods. 
Through appropriate formulation these approaches can be 
tailored for static or temporal (dynamic) data. A well-
organized review of these methods is provided in [1]. 

Although several approaches are introduced in the 
literature to tackle challenges in biological network 
reconstruction, there has been no systematic effort to 
compare the performance of available methods on actual 
data-sets in terms of properties of the data pattern with 
respect to amount of missing data, or level of noise 
included in the dataset. In the present work, we provide an 
organized comparison of four popular methods for 
reconstruction of data driven biological networks with 
respect to their computational complexity and their 
robustness in identifying the true network with different 
levels of missing/unavailable and noisy data generated 
from real and simulated experiments. 

The organization of this paper is as following: Section 
2 briefly describes the methods implemented in this paper. 
Section 3 presents the results of implementation of the 
four methods for the reconstruction of the networks on 
actual data (phosphoprotein signaling and cytokine 
measurements in RAW 264.7 cells by the Alliance for 
Cellular Signaling (AfCS)) with partially known network 
and simulated data for which the true network (or model 
coefficients) is known. In section 4 we evaluate the 
performance of these methods for different levels of 
missing data and the level of noise. Section 5 provides a 
summary and conclusions. 
 
2. Methods 
 
In this section the four methods are succinctly described. 
These descriptions also shed light on the conceptual 
differences among the four methods in tackling the 



problem of network reconstruction. The scope of the 
methods is linear input/output mapping of static or 
dynamic data. 

2.1 Standard Least Squares 
 
Standard least squares is a method for estimating the 
unknown coefficients (or parameters) of a linear model 
such that the sum of squares of deviations from observed 
response is minimized. This method is one of the oldest 
techniques in modern statistics[19]. 

Let Xm×n  be an input data set (each column 
normalized to zero-mean and unit standard deviation) and 
Ym×p  (mean-centered) be the corresponding observed 
response (outputs). For simplicity, assume that p = 1 (else 
the procedure can be repeated on each output 
individually). Suppose that ˆ B  is the candidate estimate 
for the parameter B in the linear (affine) system: 
Y XB= . Then the linear regression model of the system 
becomes 

ˆY XB ε= +                      (1) 

where ε  is the residual vector. The objective is to 
minimize the Euclidean norm of residual vector in the 
following equation: 

2ˆ ˆ ˆarg min{ ( ) ( )}TB Y XB Y XBε= = − −                (2) 

The least squares solution to (2) is: 

YXXXB TT 1)(ˆ −=                    (3) 

2.2 Principal Component Regression (PCR) 
 
Principal component regression, which is based on 
principal component analysis, is required when XX T is 
(nearly) singular so that one or more of its eigenvalues are 
(close to) zero. Then, the principal components 
corresponding to only the first several eigenvalues 
(starting with the largest) are used. 

     The procedure of PCR is as follows: 

1) Given the normalized input data Xm×n  and 
mean-centered output data Ym×p , let 
Γk = {γ j , j =1,...k} be the set of k largest 
eigenvalues and Vk = {v j , j =1,...k} be the set 
of corresponding eigenvectors of the covariance 
matrix / ( 1)TC XX m= − . Calculate the 
matrix of latent variables Tk : 

k kT X V= ×                     (4) 

2) Create the PCR model based on k latent 
variables: 

1 T
k k kB V T Y−= ×Γ × × &      

kppPCR BXYYYstdRMSE ×=−= );(           (5) 

     where RMSE is the square-root of mean-squared-error. 
The number of latent variables in PCR can be either based 
on cross-validation or on the basis of fraction of 
cumulative variance (say 0.8 < r < 0.95) captured.  

     Partial least squares (PLS) is a method similar to PCR 
with the difference being that both X and Y matrices 
(instead of only X) are used to construct the set of linear 
combinations of significant inputs for regression. A 
detailed description of the method of PLS is presented in 
[20, 21]. With either of these methods, the coefficients B 
can be tested for their statistical significance by 
estimating the standard deviation of coefficients ( Bσ ) of 
the model and then comparing their ratio using a two-
tailed t-test. For the PCR method, concisely,  

PCR
T

kkkkB RMSEVVdiag ××Γ×≈ − 2/11
, )(σ  and 

kjBkjkj Br ,,,, /σ=  for jth input when k latent vectors are 

used. Average of kjr ,  over k s/t: 0.8 < r (fractional 
cumulative variance) < 0.95 is computed and if it is 
greater than 1);,2/1( −−=− kmvvtinv α (inverse of 
cumulative t-distribution; 01.0=α for a significance 
level of 0.99), the input is considered significant [8]. 

2.3 Least Absolute Shrinkage and Selection Operator 
(LASSO) 

 
In LASSO the problem of reconstruction is cast into an 
optimization problem of the form (2) with an additional 
nonlinear constraint. An abstract formulation of the 
LASSO is given as the following:  

2 ˆˆ ˆ ˆarg min{ ( ) ( )}  s/t  T
j

j
B Y XB Y XB b tε= = − − ≤∑      (6) 

where parameter t handles the amount of shrinkage in the 
estimation of parameters ˆ B . The constraint imposed on 
optimization problem (6) shrinks the absolute value of 
some parameters and set the rest to zero, hence, extracts 
the descriptive features of the model. A quadratic 
programming approach (interior-point method) is used to 
solve the constrained optimization problem (6) [17]. 

2.4 Linear Matrix Inequalities (LMI) 
 
The basic idea of this method is to convert a nonlinear 
optimization problem into a linear optimization problem 
[22]. This method has also been used to reconstruct and 
minimize dynamic networks [16, 23]. For a fair 
comparison of different methods applied in this paper, 
LMI method is also applied to static data. Problem (2) 
may be modified into:    



ˆ ˆmin( )  s/t ( )( )
n p

T
m m

B
Y XB Y XB Iε ε

×
×

∈
− − <                    (7) 

The constraint imposed on (7) is nonlinear with respect 
to ˆ B . Congruence transformation converts problem (7) to 
into the following LMI representation: 

ˆ
0ˆ( )

m m

T
p p

I Y XB

Y XB I

ε ×

×

⎛ ⎞− −
⎜ ⎟ <
⎜ ⎟− −⎝ ⎠

                                 (8) 

Pre-existing knowledge (e.g., 12 0b >  or 31 0b = ) can be 
added in the form of LMI constraints in the following 
format: 

( )0T T T
i j j iV BU U B V+ = ><                    (9) 

where 0,
1,

r
i

r

v r i
V

v r i
= ≠⎧

= ⎨ = =⎩
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r

i
r

u r i
U

u r i
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= ⎨ = =⎩
 are 

respectively 1n×  and 1p×  column vectors to constrain 
ˆ th
ijb element. 

Suppose that the normalized matrix of parameters, B̂ , is 
calculated as 

( ).. :2 2
ˆ ˆ ˆ ˆ/ij ij i jb b b b=                                (10) 

i.e., by dividing each element by the L2-norm of its row 

and column. If a value of îjb  becomes smaller than a 

threshold (say, LMIr ), then the corresponding parameter is 
nullified (insignificant). Further discussion can be found 
in [16]. 

2.5 Metrics for comparing the methods 
 
Two data sets have been used to evaluate the performance 
of the four methods presented in Section 2. First  set is 
experimental data measured on macrophage cells 
(Phosphoprotein (PP) vs Cytokine [24]) and the second 
set consists of synthetic data generated in  Matlab. We 
build the model using 80% of the data-set (called training 
set) and use whole data-set to validate the model (called 
test set). Root-Mean-Squared-Error (RMSE) on the test 
set, and the number and the identity of the significant 
predictors (model parameters) selected are used as metrics 
to evaluate the performance of each method.  

3. Results 
 
The results of the implementation of the described 
methods are presented below. 

3.1 Comparison on PP/Cytokine Data 

 
The PP/Cytokine data set has 22 inputs and 6 outputs. 
RMSE of the resulting model via each method was 
calculated for all the outputs. Figure 1 shows a scatter-
plot of the predicted outputs vs. experimental values for 
the LS and PCR methods. LSRMSEσ = . For ease of 
visualization, σ  and 2σ  bands are also shown (dashed 
and dotted lines, respectively) in Figure 1. Further 
information regarding the performance of the models will 
be brought into the text separately. Table 1 lists the 
RMSE for the six outputs for the four methods. As 
expected, the LS method has the smallest RMSE, but 
other three methods (PCR, LMI and LASSO) are also 
comparable. 
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Figure 1. Actual response vs. predicted response by LS 

and PCR methods for PP/cytokine data. Dotted and 
dashed lines represent 1σ  and 2σ bands, respectively. 



Table 1. RMSE on training set for different methods 
(PP/cytokine data). 

Output 1 2 3 4 5 6 
LSQ 0.73 0.40 0.60 0.60 1.30 0.99
PCR 0.78 0.44 0.75 0.76 0.96 1.06

LASSO 0.76 0.41 0.61 0.61 1.31 1.01
LMI 0.74 0.41 0.61 0.61 1.31 0.99

 
Each method used a different strategy to identify the 

more informative/significant variables for building the 
model (Section 2). The number of significant variables 
depends on the selection criterion (or tuning parameter) 
used in the methods. For PCR, 0.8 < r < 0.95 is used to 
capture 80-95% of the variance in the input data and the 
significance is based on the average ratio for t-test to get a 
stable estimate. In LASSO, the criterion is set to 0.66t =  
for nullifying 33% of the smallest estimated parameters of 
the resulting model. For LMI, the threshold 0.3LMIr =  is 
used. For each method the number of significant variables 
identified and used to build the model is listed in Table 2. 
PCR tends to retain lesser number of inputs. LASSO 
tends to retain more inputs (depends on the value of t). 
Overall, LASSO and LMI are comparable. 

 
Table 2. Number of significant inputs for each output 

(PP/cytokine data). 
Output  PCR LASSO LMI 
G-CSF 12 10 14 
IL-1a 12 14 15 
IL-6 6 18 13 

IL-10 7 15 15 
MIP-1a 11 18 17 

RANTES 9 12 12 
TNFa 12 15 17 

 
3.2 Comparison on synthetic noisy data 
 
The four methods are applied on synthetic data with 22 
inputs and 1 output. The true coefficients for the inputs 
(about 1/3rd) are made zero to test the methods if they 
identify them as insignificant. Here we also study the 
effect of increasing noise in the output data. Four outputs 
with 5, 10, 20 and 40% noise levels, respectively, are 
generated from the noise-free (true) output. Figure 2 
shows the fit of predicted vs. supplied (noisy) output data 
for the LMI method. Increase in the noise is evident. 
Some of this noise has contaminated the predictions since 
the fraction of data points within the 2σ bands is about 
the same for all noise levels. In terms of RMSE (Table 3), 
LS performs better than PCR, LMI and LASSO. Since the 
inputs were independent, RMSELS is comparable to the 
standard deviation of the noise added to the outputs. 
RMSELMI is very close to RMSELS. 

 
 

4. Discussion 
 
 In order to evaluate the accuracy of each method in 
estimating the model parameters, for the case of synthetic 
data set with known model coefficients, the 
computed/estimated parameter values have been 
compared with their true (known) values and their 
deviations expressed as mean(abs(bmethod/btrue -1)) are 
listed in Table 4. bmethod and btrue are the estimated (using 
the “method” method) and the true values of the 
parameters for a chosen output, respectively. The “mean” 
is computed over the coefficients for all the n inputs. 
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Figure 2. LMI on synthetic noisy data: Predicted versus 
supplied (noisy) data. Dotted and dashed lines represent 

1σ  and 2σ bands, respectively. 
 

Table 3. RMSE on all data: methods vs. noise level. 
Noise % 5 10 20 40 

LS 0.9 2.0 3.7 7.3 
PCR 3.3 3.6 5.0 8.6 

LASSO 4.4 4.8 6.0 9.5 
LMI 1.4 2.1 3.8 7.5 

 
Table 4. Fractional error in estimating the parameters: 

methods vs. noise level (synthetic data). 
Noise % 5 10 20 40 

PCR 0.09 0.09 0.11 0.11 
LASSO 0.47 0.47 0.46 0.42 

LMI 0.21 0.18 0.23 0.72 
 
Next, we explore the effect of the amount of training data 
used on the prediction accuracy (through RMSE), both for 
the real and the synthetic data. 
 
4.1 Effect of missing data: real data-set 
 
To test the effect of missing data, the output GCSF from 
the real data set is chosen. 0-60% data, in increments of 
5%, was assumed to be missing. The remaining data was 
used for training and RMSE was computed on the test 
(missing) data. This was repeated 10 times by choosing 



the selected fraction of data randomly, and average RMSE 
was computed. Figure 3 shows average RMSE for the real 
data. With increasing level of missing data, prediction 
accuracy deteriorates as expected. Table 5 lists the 
fractional standard deviation (std(RMSE0-60%)/RMSE0%) 
and fractional maximum deviation (max(RMSEx% -  
RMSE0%)/RMSE0%) as compared to no missing data. PCR 
and LASSO are more robust than LS and LMI. 
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Figure. 3 RMSE versus percentage of missing data for 
different methods on PP/Cytokine data. 

 
Table 5. Effect of missing data with PP/cytokine data 

(validation set) 

Method 
Fractional standard 

deviation 
Fractional max 

deviation 
LS 0.08 0.68 

PCR 0.05 0.23 
LASSO 0.04 0.42 

LMI 0.05 0.56 
 

4.2 Effect of missing data: synthetic data 
 
Figure 4 shows the same comparison for the synthetic 
data with 20% noise. The qualitative nature of the 
behavior differs from that for the real data. It is surprising 
that the performance of LS is the best and that of LASSO 
is poorest as the amount of missing data increases. LS and 
PCR show stable performance.  

Overall, PCR performs well on both data sets, leaving 
LASSO slightly behind for the real data and LMI for the 
synthetic data. Performance of PCR is robust whereas that 
of LS, LASSO and LMI appears to be dependent on some 
inherent characteristics of the data, which need to be 
explored further. Excellent performance of LS method on 
the synthetic data also deserves further investigation.  

 
4.3 Computing time 
 
The simulations were run on a Dual-Core Intel Pentium 
IV processor with 2.66GHz processing speed per core, 
4MB of cache, and 3 GB of RAM. An estimate of CPU 
time used by each method is summarized in Table 6. A 
trade-off between robustness and computing time is 

apparent for the four methods. Based on the two case 
studies (real data and synthetic data), PCR is robust as 
well as fast as compared to LASSO and LMI. LASSO and 
LMI are slower than LS and PCR method by a factor of 
hundred for the sizes of the datasets chosen. Further 
studies on the effect of the size of the system are 
underway. This comparison can help the users choose the 
right method for a specific application. 

Table. 6 Processing time vs. methods. 
Method Processing time(sec) 

LS 0.1491 
PCR 0.2484 

LASSO 6.5657 
LMI 37.595 
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Figure. 4 RMSE versus percentage of missing data for 

different methods on synthetic date with 20% noise level. 
 
5. Conclusion 
 
Four methods for reconstruction of networks (LS, PCR, 
LASSO, and LMI) have been described and implemented 
on two different data-sets. First data-set comprised of a 
experimental data on phosphoproteins/cytokines and the 
second data-set was synthesized artificially. The least-
squares method is naturally the best in terms of goodness 
of fit, but the other three methods are better in capturing 
most of the true inputs/predictors for the outputs. PCR 
performed better than other methods for the synthetic data 
with increasing levels of noise. The effect of missing data 
was also investigated in this work and our analysis 
demonstrates that the PCR technique is the most robust 
method for both the real data and synthetic data with 
medium level of noise. Not surprising is that fact the LS 
and PCR are the fastest and LMI is the slowest. There are 
several unanswered questions such as why LASSO 
performed poorly on synthetic data with increasingly 
more missing data. Another interesting question is the 
dependence of the performance on the type/characteristics 
of the noise. We are currently investigating these issues.  
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