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•  Framework for hypothesis testing 
with control [1,2] 
•  Control affects quality of 
observations rather than evolution of 
information state 
   

Controlled Sensing 

Graph Classification 

•  Classify a graph based on 
connectivity via probabilistic 
observations of edges 
•  Applications: Epidemic prediction/
detection, Social network analysis 
•  Objective: Balance cost of sampling 
with classification performance 
•  Framework: Sequential Hypothesis 
Testing with Control 

Conclusions and Future Work 
•  Proposed an asymptotically optimal sequential 
hypothesis test with control to classify graphs 
by connectivity 
•  Future work involves validation on large data 
sets, computationally simple approximations of 
the controlled sensing scheme 

•  Simple Maximum-Likelihood Approach 
•  Let       be possible edge between vertices  
•  Let 

•                        if  

•  Solvable in linear time in N 

Graph Estimation 

Mathematical Model 

Proposed Algorithm [3] 

At each time k, 
1.  Find maximum-likelihood estimate of 

graph 
2.  Estimate hypothesis       from   
3.  Stop if (stopping rule) 

     
    where               is the induced joint  
    distribution of the observations and     
    controls.  
    Else, select next node      to observe  
    according to distribution     solving 
 
     
     where   is a design parameter (control policy)  

Stopping Rule 

•  Minimizer found by moving edges 
from     to                or vice versa       

•   Consider 
•   Define cost of moving edge 

•   Minimum value is sum of 
    weights 
•  Analogous for          (swap         ), 

negate   
•  Solvable in                 time 
 
  
	  
•  Two player zero-sum game 

•  Player 1: Choose control to maximize 
avg. KL-distance between estimate and  

•  Player 2: Choose graph under 
     to minimize avg. KL-distance 

•  Pose in terms of incidence matrix 

•  LP Relaxation 

•  Analogous when         (swap        )  

Control Policy 
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•  Define two classes of graphs  
 
 

•  Threshold for high connectivity 
•  Binary Composite Hypothesis Test  

•  Proposed controlled sensing 
algorithm gives asymp. optimal error 
decay with sample size by [1,2] 

Problem Formulation 

Numerical Results [3] 

•  Consider the following 20 node graph with 
average node degree 8.9 

 

•  Comparison to frontier sampling [4], a 
weighted random walk technique with no 
spurious edges,  

•  With spurious edges, random walks fail 

 
 
 
 

Real Observed Edge 
Real Unobserved Edge 
Spurious (False) Edge 

•  Fixed underlying graph  
•  At each time select a node to observe (Red, Control) 
•  When node    is selected, observations     are subset of 

possible incident edges 
•  Real edges are observed with probability  
•  Spurious edges are observed with 

probability  

•  Degree of a node: Number of edges incident to node 

•  Average node degree: 
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Ti (k) = {Times node i is sampled up to time k}
Tij (k) = Ti (k)∪T j (k)
lij = # of times edge eij  is observed

eij ∈Ĝ(y
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PN = Probability distributions on N  nodes

IS = Edges to insert into Ĝ  to be in G1
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qM
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and updating T
ij

(k) after every sample. To find eG, sort the edges
by |T

ij

(k)| in ascending order and insert the first d|⌘ � ¯d b
G

|N/2e
edges into bG. Thus, the LHS of the stopping rule is the sum of the
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For OM2, we start with the case where bG 2 G0. Then,
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The numerator is solely a function of bG and can be precomputed. In-
serting or removing an edge from a graph corresponds to removing
or adding the edge to the complement graph. We can split the mov-
ing of edges from eGC to eG into two cases for the minimization. Let
�
ij

(k) denote the change in (10) when edge e
ij

is moved from bGC
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Thus, the LHS of (5) under OM2 can be calculated by noting
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C . This can be solved in O(N2
) time.

In the case where bG 2 G1, replace all references to eGC with
eG, and note that E e

G

⇢ E b
G

. Since we move edges from eG to eGC ,
replace �

ij

with ��
ij

, and the rest of the algorithm is identical.
In practice, it is useful to start the algorithm with some initial

observations of each node (or a subset of nodes) in order to reduce
the stopping time as in remark 7.1 of [8].

4 Discussion and Results
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Fig. 1: Graph G with 20 nodes with average node degree 8.9

For concreteness and conciseness, we present classification per-
formance on an Erdös-Rènyi (ER) generated graph with uniform
edge probability 1

2 on 20 nodes with average node degree 8.9 shown
in Fig.1. ER graphs are of interest from a performance analysis per-
spective as proving properties of an appropriate family of ER graphs
shows that the property holds for almost all graphs [11]. As per
remark 7.1 in [8], the procedure presented is of interest when ⌘ is
close to ¯d

G

. Thus, we show results for ⌘ = 8.8 and ⌘ = 9.0 with
the tests truncated to 1000 samples. c(u, uk, bG) is the number of
times a node has been sampled up to time k, or 1 if it has not been
sampled. The standard deviation of all probabilities presented down
to 10

�3 is at least an order of magnitude below the probabilities.
The results for OM1 with p = 0.4 and p = 0.7 are given in the bot-
tom row of Fig.2.The controlled sensing test with expected stopping
time E[N ] performs strictly better than the FS with budget E[N ]
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Fig. 2: First Row: Controlled sensing with spurious observations.
Second Row: Controlled sensing versus FS without spurious obser-
vations. Note that connected lines are drawn only for readability.

with ⌘ = 8.8 (since false alarms are not possible under this model,
this is the hardest value of ⌘ to classify) in the sense of lower error
probabilities. This is in part due to the stopping rule, which accounts
for p while FS explicitly assumes p = 1. The control is also tailored
to capture the structure of G which controls the average node degree
rather than the general structure of G as in the case of FS. There is
also a threshold phenomena in detection, where the probability of
error falls off at a very high rate when controlled sensing has (on
average) observed enough edges to conclude the graph has average
node degree greater than ⌘. It was also found that FS offered little
improvement under this graph model until the number of walkers
was on the order of N since it is unlikely then for a walker to get
trapped in a small neighborhood in the graph.

Under OM2, FS is not directly applicable due to the spurious
edges allowing a walker to transition between non-neighbors in G.
Thus, we compare two controlled sensing tests to study the rela-
tive performance difference between tests with different observation
probabilities for both true and spurious edges (p = 0.8, q = 0.3 and
p = 0.9, q = 0.1) in the bottom row of 2. Lowering q and increas-
ing p significantly reduces the number of samples needed to achieve
a given error probability. The dashed least-squares fit lines shown
for the tails of the data indicate that in these regimes the error prob-
ability decays approximately exponentially. This is consistent with
the asymptotic exponential decay of the error probability with the
stopping time in Chernoff’s procedure and controlled sensing [8, 5].

5 Conclusions and Future Work
In this paper, we proposed a controlled sensing based test for classi-
fying a graph based on connectivity using probabilistic observations
of its nodes. This test was shown to outperform classic random walk
based approaches at low target error rates. The asymptotic optimal-
ity of the proposed test follows from the optimality of the modified
Chernoff test[5]. Future work includes developing suboptimal dis-
tributed controlled sensing tests that admit simpler computations and
that can be easily parallelized. Another key direction for future work
is to exploit the sparsity present in many networks such as the DBLP
authorship data set and to develop approximate algorithms for other
connectivity measures.
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For concreteness and conciseness, we present classification per-
formance on an Erdös-Rènyi (ER) generated graph with uniform
edge probability 1

2 on 20 nodes with average node degree 8.9 shown
in Fig.1. ER graphs are of interest from a performance analysis per-
spective as proving properties of an appropriate family of ER graphs
shows that the property holds for almost all graphs [11]. As per
remark 7.1 in [8], the procedure presented is of interest when ⌘ is
close to ¯d

G

. Thus, we show results for ⌘ = 8.8 and ⌘ = 9.0 with
the tests truncated to 1000 samples. c(u, uk, bG) is the number of
times a node has been sampled up to time k, or 1 if it has not been
sampled. The standard deviation of all probabilities presented down
to 10

�3 is at least an order of magnitude below the probabilities.
The results for OM1 with p = 0.4 and p = 0.7 are given in the bot-
tom row of Fig.2.The controlled sensing test with expected stopping
time E[N ] performs strictly better than the FS with budget E[N ]
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Fig. 2: First Row: Controlled sensing with spurious observations.
Second Row: Controlled sensing versus FS without spurious obser-
vations. Note that connected lines are drawn only for readability.

with ⌘ = 8.8 (since false alarms are not possible under this model,
this is the hardest value of ⌘ to classify) in the sense of lower error
probabilities. This is in part due to the stopping rule, which accounts
for p while FS explicitly assumes p = 1. The control is also tailored
to capture the structure of G which controls the average node degree
rather than the general structure of G as in the case of FS. There is
also a threshold phenomena in detection, where the probability of
error falls off at a very high rate when controlled sensing has (on
average) observed enough edges to conclude the graph has average
node degree greater than ⌘. It was also found that FS offered little
improvement under this graph model until the number of walkers
was on the order of N since it is unlikely then for a walker to get
trapped in a small neighborhood in the graph.

Under OM2, FS is not directly applicable due to the spurious
edges allowing a walker to transition between non-neighbors in G.
Thus, we compare two controlled sensing tests to study the rela-
tive performance difference between tests with different observation
probabilities for both true and spurious edges (p = 0.8, q = 0.3 and
p = 0.9, q = 0.1) in the bottom row of 2. Lowering q and increas-
ing p significantly reduces the number of samples needed to achieve
a given error probability. The dashed least-squares fit lines shown
for the tails of the data indicate that in these regimes the error prob-
ability decays approximately exponentially. This is consistent with
the asymptotic exponential decay of the error probability with the
stopping time in Chernoff’s procedure and controlled sensing [8, 5].

5 Conclusions and Future Work
In this paper, we proposed a controlled sensing based test for classi-
fying a graph based on connectivity using probabilistic observations
of its nodes. This test was shown to outperform classic random walk
based approaches at low target error rates. The asymptotic optimal-
ity of the proposed test follows from the optimality of the modified
Chernoff test[5]. Future work includes developing suboptimal dis-
tributed controlled sensing tests that admit simpler computations and
that can be easily parallelized. Another key direction for future work
is to exploit the sparsity present in many networks such as the DBLP
authorship data set and to develop approximate algorithms for other
connectivity measures.
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For concreteness and conciseness, we present classification per-
formance on an Erdös-Rènyi (ER) generated graph with uniform
edge probability 1

2 on 20 nodes with average node degree 8.9 shown
in Fig.1. ER graphs are of interest from a performance analysis per-
spective as proving properties of an appropriate family of ER graphs
shows that the property holds for almost all graphs [11]. As per
remark 7.1 in [8], the procedure presented is of interest when ⌘ is
close to ¯d

G

. Thus, we show results for ⌘ = 8.8 and ⌘ = 9.0 with
the tests truncated to 1000 samples. c(u, uk, bG) is the number of
times a node has been sampled up to time k, or 1 if it has not been
sampled. The standard deviation of all probabilities presented down
to 10

�3 is at least an order of magnitude below the probabilities.
The results for OM1 with p = 0.4 and p = 0.7 are given in the bot-
tom row of Fig.2.The controlled sensing test with expected stopping
time E[N ] performs strictly better than the FS with budget E[N ]
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Fig. 2: First Row: Controlled sensing with spurious observations.
Second Row: Controlled sensing versus FS without spurious obser-
vations. Note that connected lines are drawn only for readability.

with ⌘ = 8.8 (since false alarms are not possible under this model,
this is the hardest value of ⌘ to classify) in the sense of lower error
probabilities. This is in part due to the stopping rule, which accounts
for p while FS explicitly assumes p = 1. The control is also tailored
to capture the structure of G which controls the average node degree
rather than the general structure of G as in the case of FS. There is
also a threshold phenomena in detection, where the probability of
error falls off at a very high rate when controlled sensing has (on
average) observed enough edges to conclude the graph has average
node degree greater than ⌘. It was also found that FS offered little
improvement under this graph model until the number of walkers
was on the order of N since it is unlikely then for a walker to get
trapped in a small neighborhood in the graph.

Under OM2, FS is not directly applicable due to the spurious
edges allowing a walker to transition between non-neighbors in G.
Thus, we compare two controlled sensing tests to study the rela-
tive performance difference between tests with different observation
probabilities for both true and spurious edges (p = 0.8, q = 0.3 and
p = 0.9, q = 0.1) in the bottom row of 2. Lowering q and increas-
ing p significantly reduces the number of samples needed to achieve
a given error probability. The dashed least-squares fit lines shown
for the tails of the data indicate that in these regimes the error prob-
ability decays approximately exponentially. This is consistent with
the asymptotic exponential decay of the error probability with the
stopping time in Chernoff’s procedure and controlled sensing [8, 5].

5 Conclusions and Future Work
In this paper, we proposed a controlled sensing based test for classi-
fying a graph based on connectivity using probabilistic observations
of its nodes. This test was shown to outperform classic random walk
based approaches at low target error rates. The asymptotic optimal-
ity of the proposed test follows from the optimality of the modified
Chernoff test[5]. Future work includes developing suboptimal dis-
tributed controlled sensing tests that admit simpler computations and
that can be easily parallelized. Another key direction for future work
is to exploit the sparsity present in many networks such as the DBLP
authorship data set and to develop approximate algorithms for other
connectivity measures.
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In practice, it is useful to start the algorithm with some initial

observations of each node (or a subset of nodes) in order to reduce
the stopping time as in remark 7.1 of [8].
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Fig. 1: Graph G with 20 nodes with average node degree 8.9

For concreteness and conciseness, we present classification per-
formance on an Erdös-Rènyi (ER) generated graph with uniform
edge probability 1

2 on 20 nodes with average node degree 8.9 shown
in Fig.1. ER graphs are of interest from a performance analysis per-
spective as proving properties of an appropriate family of ER graphs
shows that the property holds for almost all graphs [11]. As per
remark 7.1 in [8], the procedure presented is of interest when ⌘ is
close to ¯d

G

. Thus, we show results for ⌘ = 8.8 and ⌘ = 9.0 with
the tests truncated to 1000 samples. c(u, uk, bG) is the number of
times a node has been sampled up to time k, or 1 if it has not been
sampled. The standard deviation of all probabilities presented down
to 10

�3 is at least an order of magnitude below the probabilities.
The results for OM1 with p = 0.4 and p = 0.7 are given in the bot-
tom row of Fig.2.The controlled sensing test with expected stopping
time E[N ] performs strictly better than the FS with budget E[N ]
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Fig. 2: First Row: Controlled sensing with spurious observations.
Second Row: Controlled sensing versus FS without spurious obser-
vations. Note that connected lines are drawn only for readability.

with ⌘ = 8.8 (since false alarms are not possible under this model,
this is the hardest value of ⌘ to classify) in the sense of lower error
probabilities. This is in part due to the stopping rule, which accounts
for p while FS explicitly assumes p = 1. The control is also tailored
to capture the structure of G which controls the average node degree
rather than the general structure of G as in the case of FS. There is
also a threshold phenomena in detection, where the probability of
error falls off at a very high rate when controlled sensing has (on
average) observed enough edges to conclude the graph has average
node degree greater than ⌘. It was also found that FS offered little
improvement under this graph model until the number of walkers
was on the order of N since it is unlikely then for a walker to get
trapped in a small neighborhood in the graph.

Under OM2, FS is not directly applicable due to the spurious
edges allowing a walker to transition between non-neighbors in G.
Thus, we compare two controlled sensing tests to study the rela-
tive performance difference between tests with different observation
probabilities for both true and spurious edges (p = 0.8, q = 0.3 and
p = 0.9, q = 0.1) in the bottom row of 2. Lowering q and increas-
ing p significantly reduces the number of samples needed to achieve
a given error probability. The dashed least-squares fit lines shown
for the tails of the data indicate that in these regimes the error prob-
ability decays approximately exponentially. This is consistent with
the asymptotic exponential decay of the error probability with the
stopping time in Chernoff’s procedure and controlled sensing [8, 5].

5 Conclusions and Future Work
In this paper, we proposed a controlled sensing based test for classi-
fying a graph based on connectivity using probabilistic observations
of its nodes. This test was shown to outperform classic random walk
based approaches at low target error rates. The asymptotic optimal-
ity of the proposed test follows from the optimality of the modified
Chernoff test[5]. Future work includes developing suboptimal dis-
tributed controlled sensing tests that admit simpler computations and
that can be easily parallelized. Another key direction for future work
is to exploit the sparsity present in many networks such as the DBLP
authorship data set and to develop approximate algorithms for other
connectivity measures.
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For concreteness and conciseness, we present classification per-
formance on an Erdös-Rènyi (ER) generated graph with uniform
edge probability 1

2 on 20 nodes with average node degree 8.9 shown
in Fig.1. ER graphs are of interest from a performance analysis per-
spective as proving properties of an appropriate family of ER graphs
shows that the property holds for almost all graphs [11]. As per
remark 7.1 in [8], the procedure presented is of interest when ⌘ is
close to ¯d

G

. Thus, we show results for ⌘ = 8.8 and ⌘ = 9.0 with
the tests truncated to 1000 samples. c(u, uk, bG) is the number of
times a node has been sampled up to time k, or 1 if it has not been
sampled. The standard deviation of all probabilities presented down
to 10

�3 is at least an order of magnitude below the probabilities.
The results for OM1 with p = 0.4 and p = 0.7 are given in the bot-
tom row of Fig.2.The controlled sensing test with expected stopping
time E[N ] performs strictly better than the FS with budget E[N ]
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Second Row: Controlled sensing versus FS without spurious obser-
vations. Note that connected lines are drawn only for readability.

with ⌘ = 8.8 (since false alarms are not possible under this model,
this is the hardest value of ⌘ to classify) in the sense of lower error
probabilities. This is in part due to the stopping rule, which accounts
for p while FS explicitly assumes p = 1. The control is also tailored
to capture the structure of G which controls the average node degree
rather than the general structure of G as in the case of FS. There is
also a threshold phenomena in detection, where the probability of
error falls off at a very high rate when controlled sensing has (on
average) observed enough edges to conclude the graph has average
node degree greater than ⌘. It was also found that FS offered little
improvement under this graph model until the number of walkers
was on the order of N since it is unlikely then for a walker to get
trapped in a small neighborhood in the graph.

Under OM2, FS is not directly applicable due to the spurious
edges allowing a walker to transition between non-neighbors in G.
Thus, we compare two controlled sensing tests to study the rela-
tive performance difference between tests with different observation
probabilities for both true and spurious edges (p = 0.8, q = 0.3 and
p = 0.9, q = 0.1) in the bottom row of 2. Lowering q and increas-
ing p significantly reduces the number of samples needed to achieve
a given error probability. The dashed least-squares fit lines shown
for the tails of the data indicate that in these regimes the error prob-
ability decays approximately exponentially. This is consistent with
the asymptotic exponential decay of the error probability with the
stopping time in Chernoff’s procedure and controlled sensing [8, 5].

5 Conclusions and Future Work
In this paper, we proposed a controlled sensing based test for classi-
fying a graph based on connectivity using probabilistic observations
of its nodes. This test was shown to outperform classic random walk
based approaches at low target error rates. The asymptotic optimal-
ity of the proposed test follows from the optimality of the modified
Chernoff test[5]. Future work includes developing suboptimal dis-
tributed controlled sensing tests that admit simpler computations and
that can be easily parallelized. Another key direction for future work
is to exploit the sparsity present in many networks such as the DBLP
authorship data set and to develop approximate algorithms for other
connectivity measures.
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