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Question

Consider communication over a public noiseless channel. The transmitter

and receiver share secret key, which they use to encrypt the communi-

cation. An eavesdropper observes the communication and attempts to

reconstruct the source sequence.

What is the optimal tradeoff among communication rate, secret

key rate, distortion at the eavesdropper, and distortion at the

legitimate receiver?
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Instead of two distortion functions d1(x, y) and d2(x, z), use a single pay-

off function π(x, y, z). The expected payoff for a block is defined as
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Note that at each step i, the adversary is assumed to have access to a

noisy version of the past behavior of the system, namely (W i−1
x ,W i−1

y ).

This assumption is referred to as causal disclosure and plays a pivotal role.

Why causal disclosure?

Consider the following setting:

•Binary source sequence Xn.

•One bit of secret key K ∼ Bern(1/2).

•Encoder sends M = Y n, where Yi = Xi ⊕K.

•Adversary only views M (i.e., no assumption of causal disclosure)

In this scenario, any adversary incurs maximum distortion because Yi is

independent of Xi for all i. It appears as though we have achieved maxi-

mum secrecy for an n-bit source with only one bit of secret key! However,

the adversary actually knows a great deal about Xn, namely that it is one

of two candidate sequences. Furthermore, the adversary can determine

Xn if he knows one true bit of the source sequence.

In general, if it is assumed that an adversary only observes the

public message M , then an arbitrarily small rate of secret key is

enough to guarantee maximum distortion. However, such secrecy

is weak because the additional observation of just a few source

symbols is enough for the adversary to completely identify the

source sequence. A distortion-based approach to secrecy is

strengthened considerably by an assumption of causal disclosure.

Main result

Theorem [1]

Fix PX, π(x, y, z), and causal disclosure channels PWx|X and PWy|Y . The

closure of achievable (R,R0,Π) is equal to
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(R,R0,Π) : R ≥ I(X ;U, V )

R0 ≥ I(WxWy;V |U)

Π ≤ min
z(u)

E π(X, Y, z(U))
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Example

Let PX ∼ Bern(1/2) and π(x, y, z) = 1{x = y, x 6= z}. For this choice
of payoff function, the block-average payoff is the fraction of symbols in

a block that Nodes A and B are able to agree on and keep hidden from

the adversary. There are four natural special cases of Theorem 1 that are

obtained by setting Wx equal to ∅ or X and setting Wy equal to ∅ or Y .

No causal disclosure: Causal disclosure of Node A:

(Wx,Wy) = (∅, ∅) (Wx,Wy) = (X, ∅)

Causal Disclosure of Node B: Causal disclosure of Nodes A and B:

(Wx,Wy) = (∅, Y ) (Wx,Wy) = (X, Y )

Equivocation

Measures of secrecy based on (normalized) equivocation are a special case

of the causal disclosure framework. For example, let (Wx,Wy) = (X, ∅)
and consider a payoff function π : X × Y ×∆X → R defined by

π(x, y, z) = log
1

z(x)
,

where z is a probability distribution on X , and z(x) denotes the probabil-

ity of x ∈ X according to z ∈ ∆X . With this choice of payoff function,

the expected payoff is exactly the normalized equivocation 1
nH(Xn|M).
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