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System Model 

•  Power is limited or stochastic at the receiver 

Optimum Communication for a Fixed Code Rate Motivation 

•  To characterize efficient communication for  a 
receiver with limited source of energy. 

Applications 

•  Wireless sensor networks. 
•  Short-range communication 

Dropping a Sample: Erasure Channel 

[Shuguang Cui, A.J. Goldsmith, and A. Bahai 2005] 

Power Consumption at the Receiver 

fixed small 

                    [Electronicdesign.com] 

Performance Metric 
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Fig. 2. Variable-timing optimum policy: Transmitted packets are labeled
x1,x2, . . . while intervals marked “C,” “S,” and “D” mark when the receiver
is (C)harging the battery, (S)ampling a packet, and (D)ecoding that packet.
The corresponding graph depicts the receiver’s stored energy.

C. Performance Metrics
Assume that the transmitter sends packets/codewords

1, . . . , N(t) by time t while packet i is encoded at rate Ri.
We define the reliable communication rate as the number of
information bits that are decoded per symbol period. It is
denoted by ρ and defined as

ρ(t) =
1

t

N(t)∑

i=1

RiIi, (3)

where the indicator Ii = 1 if the receiver reliably decodes
packet i. We assume that all packets are sent at a fixed rate
R and we seek to find the maximum reliable communication
rate, over any possible policy.

III. VARIABLE TIMING

Now we derive the maximum reliable communication rate
when the transmitter follows a variable-timing protocol. In
particular if the battery size is large enough we have the
freedom to design a policy that samples packets at the optimal
rate λ∗(R). However, sampling a packet is an online process
that must be completed during the transmission slot of that
packet. Thus sampling rate may be constrained by the receiver
energy that is available in that slot. We assume that w̄ < E∗;
otherwise, all packets will be decoded. We note that the arrival
energy in an n-symbol packet is nw̄, which scales with n. We
will see that the battery size must also scale with n. Thus,
we describe an energy harvesting system by a battery growth
rate β such that we employ a battery of size B = βn when
the block length is n. Here we assume that the code rate R
is fixed and derive the maximum reliable communication rate.
Optimization over R is deferred to Section IV.

A. Achievability
Variable-timing provides the flexibility to send the next

packet when the receiver is ready. As depicted in Fig. 2, the
transmitter sends packet xi following an idle period of duration
τi−1 that enables the receiver to decode the previous packet
and recharge the battery for sampling. Specifically, as shown
in the figure, the receiver starts by collecting energy n(λ− w̄)
in time τ0. Next, the transmitter sends packet x1 in slot 1 and
the receiver samples this packet while also harvesting energy
at rate w̄. However, when λ > w̄, sampling the packet drains
the receiver battery such that the battery is empty at the end
of the slot. What follows is a decoding period in which the
receiver decodes the sampled packet. The receiver stores no

energy in this interval because the decoder is run on a “pay as
you go” basis; the decoder runs at a speed such that its energy
consumption is matched to the energy harvesting rate w̄. When
decoding of packet x1 is completed, the receiver stores energy
at rate w̄ in preparation for sampling the next packet. This
process of sampling and decoding packet i and recharging the
battery for packet i+ 1 is repeated for each packet. The time
needed for decoding and recharging the battery is given by

τi =
nεD(R/Cλ) + n(λ− w̄)

w̄
, i = 1, . . . , L, (4)

since energy nED(R/Cλ) is collected for decoding and energy
n(λ−w̄) is harvested to recharge the battery prior to sampling
the next packet. When this stored energy is added to the energy
nw̄ that is harvested while sampling, the receiver will have suf-
ficient energy to sample at rate λ. After transmitting L packets,
each carrying nR information bits, the communication rate is

ρ(L) =
nLR

Ln+
∑L

i=0 τi
. (5)

From (4) and (5) that we obtain the communication rate

ρ = lim
L→∞

ρ(L) =
w̄R

εD(R/Cλ) + λ
. (6)

Thus, to maximize the communication rate, we need to min-
imize the total required energy. According to Fig. 1 , we can
see that if there is no bound on the battery size, this minimum
will happen at the sampling rate λ∗. However, for a limited
battery, we must consider three possibilities,

• λ∗ ≤ w̄: There is no need to store energy for sampling
before the block starts. Since enough energy arrives in
each symbol period, the packet can be sampled while
no energy is stored in the battery. To minimize the total
energy requirement, we set the sampling rate to λ∗.

• w̄ < λ∗ < β + w̄: The energy collected in one block is
not enough to sample at rate λ∗. However, the battery has
enough capacity to store such energy. It implies that some
time should be spent before sampling to collect required
energy for sampling at rate λ∗.

• β + w̄ < λ∗: Not only is the energy collected in one
slot insufficient for sampling at rate λ∗, the battery is
also not big enough to enable sampling at this rate. By
fully charging the battery prior to sampling, the largest
possible sampling rate is β + w̄. As shown in Fig. 1,
the convexity of the decoding energy function dictates
that the minimum total energy happens at the maximum
sampling rate. Therefore, to maximize the communication
rate, we should set the sampling rate at β + w̄.

Thus the sampling rate at which the energy requirement is
minimum is

λ̃(R) = min {λ∗(R),β + w̄}, (7)

and then the total minimum energy would be

Ẽ(R) = ED(R/Cλ̃) + λ̃(R). (8)

This implies the following claim.

•  Reliable Communication Rate: 

Sampling and Decoding Energy Tradeoff 

units per sample. The constant γ is both technology and appli-
cation dependent. That is, in designing a receiver front-end, the
sampling and quantization of the ADC is designed to support
the channel bandwidth and SNR needed for communication at
intended rates. The receiver front-end design choices are then
embodied in the channel from x to y. We refer to this as the
original physical channel and we assume it is memoryless and
has single letter capacity C. As C depends on the performance
of the receiver front-end, which is coupled to the sampling
energy γ, it is useful to think of γ as fixed for a physical
channel of capacity C. Without loss of generality we assume
γ = 1. That is, energy is measured in the unit of the required
energy to take one sample.

A. Energy Trade-off at the Receiver

Here, we examine energy trade-off ignoring the constraints
imposed by the harvesting process or receiver battery size.
The receiver must sample the signal and reliably decode.
Due to the randomness of the energy arrivals, the receiving
process may be interrupted. This can result in only a subset
of transmitted symbols being sampled. On the other hand, a
receiver may choose to sample only a subset of symbols in
order to save energy for future operations. When the code has
block length n and the sampler recovers samples of s out of n
symbols, we say the sampling rate is λ = s/n. We model this
selective sampling as an erasure channel concatenated to the
original physical channel; symbols that are not sampled are
erased. According to [17], if the original physical channel is
memoryless with capacity C and the erasures are independent
of the inputs and outputs of that channel and the proportion of
erasures converges in probability to α (the erasures may have
memory), then the capacity of such a channel is C(1 − α)
where α is the erasure probability and C is the capacity of
the original channel. Thus sampling at rate λ corresponds
to erasures at rate α = 1 − λ. Fixing a sufficiently long
blocklength n will ensure that a codeword that is sampled
at rate λ will be decoded correctly with high probability if
R < λC.

In models of decoding in [15], the decoding energy ED is
an increasing function of the code rate R that diverges as R
approaches capacity. While this model is hardware dependent
inasmuch as it assumes LDPC decoding, it motivates the
following abstraction of receiver energy consumption:

• Independent of the channel inputs and outputs, the re-
ceiver collects s out of n symbol samples such that s/n
converges to λ in probability for large n.

• Each symbol sample requires unit energy.
• The decoding energy is nED(R/Cλ) where ED is a con-

vex increasing function of normalized code rate R/Cλ.
Under this model with fixed R and C, the decoding energy
is a non-increasing convex function of the sampling rate as
depicted in Fig. 1. Moreover, the energy consumed by the
receiver to reliably decode one packet will be

nE = s+ nED
(

R

Cλ

)
= n

[
λ+ ED

(
R

Cλ

)]
. (1)
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Fig. 1. Normalized decoding energy f(λ) = ED(R/Cλ) for a fixed R and
C as function of the sampling rate λ. The total energy per symbol of the
receiver is minimized at λ = λ∗.

We conclude for a given n, R, and C that there is an optimal
sampling rate λ∗ = s∗/n such that

E∗(R) = λ∗(R) + ED
(

R

Cλ∗(R)

)
. (2)

is the minimum energy per symbol period required to decode
a single rate R codeword. We may sometimes drop the
variable R. Furthermore, we emphasize that although energy
is expended only on symbols that are sampled, E∗ amortizes
the energy cost of sampling over all symbols, sampled or not.

We recognize that this is a speculative model of a receiver;
the most questionable assumption is that the decoding energy
grows linearly for fixed code rate R and channel capac-
ity C. We do note that this model is consistent with the
conjecture that the decoding complexity of LDPC grows as
O((n/δ) ln(1/δ)) where δ = 1−R/Cλ [13], [14].

In addition, we observe that this model does impose re-
strictions that preclude certain performance enhancements.
For example, in a slowly varying channel, the receiver could
exploit channel state information (CSI) to collect its symbol
samples when the channel is unusually good. Similarly, the
transmitter and receiver could coordinate transmission and
reception so that a power-constrained transmitter could use
more power for those symbols that the receiver will sample. A
coordinated sleep protocol is the limiting case of this approach.

B. Energy Harvesting Models
The energy provided by the environment can be described

by a discrete time exogenous stochastic process Wt of energy
arrivals in each symbol period. The harvesting process often
has considerable memory. For a solar collector, the full range
of harvesting rates may be revealed over several days.

Here we assume that energy w̄ arrives deterministically
in every symbol period. We believe this is an appropriate
model when code words are transmitted in milliseconds and
the coherence time of the energy harvesting process is on the
order of minutes or hours. On the other hand, when codewords
are much longer than the harvesting coherence time, it also
can be shown that system performance chiefly depends on the
average harvesting rate w̄ = E [Wt].
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is the minimum energy per symbol period required to decode
a single rate R codeword. We may sometimes drop the
variable R. Furthermore, we emphasize that although energy
is expended only on symbols that are sampled, E∗ amortizes
the energy cost of sampling over all symbols, sampled or not.

We recognize that this is a speculative model of a receiver;
the most questionable assumption is that the decoding energy
grows linearly for fixed code rate R and channel capac-
ity C. We do note that this model is consistent with the
conjecture that the decoding complexity of LDPC grows as
O((n/δ) ln(1/δ)) where δ = 1−R/Cλ [13], [14].

In addition, we observe that this model does impose re-
strictions that preclude certain performance enhancements.
For example, in a slowly varying channel, the receiver could
exploit channel state information (CSI) to collect its symbol
samples when the channel is unusually good. Similarly, the
transmitter and receiver could coordinate transmission and
reception so that a power-constrained transmitter could use
more power for those symbols that the receiver will sample. A
coordinated sleep protocol is the limiting case of this approach.
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The energy provided by the environment can be described
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arrivals in each symbol period. The harvesting process often
has considerable memory. For a solar collector, the full range
of harvesting rates may be revealed over several days.

Here we assume that energy w̄ arrives deterministically
in every symbol period. We believe this is an appropriate
model when code words are transmitted in milliseconds and
the coherence time of the energy harvesting process is on the
order of minutes or hours. On the other hand, when codewords
are much longer than the harvesting coherence time, it also
can be shown that system performance chiefly depends on the
average harvesting rate w̄ = E [Wt].
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Fig. 2. Variable-timing optimum policy: Transmitted packets are labeled
x1,x2, . . . while intervals marked “C,” “S,” and “D” mark when the receiver
is (C)harging the battery, (S)ampling a packet, and (D)ecoding that packet.
The corresponding graph depicts the receiver’s stored energy.

C. Performance Metrics
Assume that the transmitter sends packets/codewords

1, . . . , N(t) by time t while packet i is encoded at rate Ri.
We define the reliable communication rate as the number of
information bits that are decoded per symbol period. It is
denoted by ρ and defined as

ρ(t) =
1

t

N(t)∑

i=1

RiIi, (3)

where the indicator Ii = 1 if the receiver reliably decodes
packet i. We assume that all packets are sent at a fixed rate
R and we seek to find the maximum reliable communication
rate, over any possible policy.

III. VARIABLE TIMING

Now we derive the maximum reliable communication rate
when the transmitter follows a variable-timing protocol. In
particular if the battery size is large enough we have the
freedom to design a policy that samples packets at the optimal
rate λ∗(R). However, sampling a packet is an online process
that must be completed during the transmission slot of that
packet. Thus sampling rate may be constrained by the receiver
energy that is available in that slot. We assume that w̄ < E∗;
otherwise, all packets will be decoded. We note that the arrival
energy in an n-symbol packet is nw̄, which scales with n. We
will see that the battery size must also scale with n. Thus,
we describe an energy harvesting system by a battery growth
rate β such that we employ a battery of size B = βn when
the block length is n. Here we assume that the code rate R
is fixed and derive the maximum reliable communication rate.
Optimization over R is deferred to Section IV.

A. Achievability
Variable-timing provides the flexibility to send the next

packet when the receiver is ready. As depicted in Fig. 2, the
transmitter sends packet xi following an idle period of duration
τi−1 that enables the receiver to decode the previous packet
and recharge the battery for sampling. Specifically, as shown
in the figure, the receiver starts by collecting energy n(λ− w̄)
in time τ0. Next, the transmitter sends packet x1 in slot 1 and
the receiver samples this packet while also harvesting energy
at rate w̄. However, when λ > w̄, sampling the packet drains
the receiver battery such that the battery is empty at the end
of the slot. What follows is a decoding period in which the
receiver decodes the sampled packet. The receiver stores no

energy in this interval because the decoder is run on a “pay as
you go” basis; the decoder runs at a speed such that its energy
consumption is matched to the energy harvesting rate w̄. When
decoding of packet x1 is completed, the receiver stores energy
at rate w̄ in preparation for sampling the next packet. This
process of sampling and decoding packet i and recharging the
battery for packet i+ 1 is repeated for each packet. The time
needed for decoding and recharging the battery is given by

τi =
nεD(R/Cλ) + n(λ− w̄)

w̄
, i = 1, . . . , L, (4)

since energy nED(R/Cλ) is collected for decoding and energy
n(λ−w̄) is harvested to recharge the battery prior to sampling
the next packet. When this stored energy is added to the energy
nw̄ that is harvested while sampling, the receiver will have suf-
ficient energy to sample at rate λ. After transmitting L packets,
each carrying nR information bits, the communication rate is

ρ(L) =
nLR

Ln+
∑L

i=0 τi
. (5)

From (4) and (5) that we obtain the communication rate

ρ = lim
L→∞

ρ(L) =
w̄R

εD(R/Cλ) + λ
. (6)

Thus, to maximize the communication rate, we need to min-
imize the total required energy. According to Fig. 1 , we can
see that if there is no bound on the battery size, this minimum
will happen at the sampling rate λ∗. However, for a limited
battery, we must consider three possibilities,

• λ∗ ≤ w̄: There is no need to store energy for sampling
before the block starts. Since enough energy arrives in
each symbol period, the packet can be sampled while
no energy is stored in the battery. To minimize the total
energy requirement, we set the sampling rate to λ∗.

• w̄ < λ∗ < β + w̄: The energy collected in one block is
not enough to sample at rate λ∗. However, the battery has
enough capacity to store such energy. It implies that some
time should be spent before sampling to collect required
energy for sampling at rate λ∗.

• β + w̄ < λ∗: Not only is the energy collected in one
slot insufficient for sampling at rate λ∗, the battery is
also not big enough to enable sampling at this rate. By
fully charging the battery prior to sampling, the largest
possible sampling rate is β + w̄. As shown in Fig. 1,
the convexity of the decoding energy function dictates
that the minimum total energy happens at the maximum
sampling rate. Therefore, to maximize the communication
rate, we should set the sampling rate at β + w̄.

Thus the sampling rate at which the energy requirement is
minimum is

λ̃(R) = min {λ∗(R),β + w̄}, (7)

and then the total minimum energy would be

Ẽ(R) = ED(R/Cλ̃) + λ̃(R). (8)

This implies the following claim.
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x1,x2, . . . while intervals marked “C,” “S,” and “D” mark when the receiver
is (C)harging the battery, (S)ampling a packet, and (D)ecoding that packet.
The corresponding graph depicts the receiver’s stored energy.
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transmitter sends packet xi following an idle period of duration
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in the figure, the receiver starts by collecting energy n(λ− w̄)
in time τ0. Next, the transmitter sends packet x1 in slot 1 and
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at rate w̄. However, when λ > w̄, sampling the packet drains
the receiver battery such that the battery is empty at the end
of the slot. What follows is a decoding period in which the
receiver decodes the sampled packet. The receiver stores no
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you go” basis; the decoder runs at a speed such that its energy
consumption is matched to the energy harvesting rate w̄. When
decoding of packet x1 is completed, the receiver stores energy
at rate w̄ in preparation for sampling the next packet. This
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the next packet. When this stored energy is added to the energy
nw̄ that is harvested while sampling, the receiver will have suf-
ficient energy to sample at rate λ. After transmitting L packets,
each carrying nR information bits, the communication rate is

ρ(L) =
nLR

Ln+
∑L

i=0 τi
. (5)

From (4) and (5) that we obtain the communication rate

ρ = lim
L→∞

ρ(L) =
w̄R

εD(R/Cλ) + λ
. (6)

Thus, to maximize the communication rate, we need to min-
imize the total required energy. According to Fig. 1 , we can
see that if there is no bound on the battery size, this minimum
will happen at the sampling rate λ∗. However, for a limited
battery, we must consider three possibilities,

• λ∗ ≤ w̄: There is no need to store energy for sampling
before the block starts. Since enough energy arrives in
each symbol period, the packet can be sampled while
no energy is stored in the battery. To minimize the total
energy requirement, we set the sampling rate to λ∗.

• w̄ < λ∗ < β + w̄: The energy collected in one block is
not enough to sample at rate λ∗. However, the battery has
enough capacity to store such energy. It implies that some
time should be spent before sampling to collect required
energy for sampling at rate λ∗.

• β + w̄ < λ∗: Not only is the energy collected in one
slot insufficient for sampling at rate λ∗, the battery is
also not big enough to enable sampling at this rate. By
fully charging the battery prior to sampling, the largest
possible sampling rate is β + w̄. As shown in Fig. 1,
the convexity of the decoding energy function dictates
that the minimum total energy happens at the maximum
sampling rate. Therefore, to maximize the communication
rate, we should set the sampling rate at β + w̄.

Thus the sampling rate at which the energy requirement is
minimum is

λ̃(R) = min {λ∗(R),β + w̄}, (7)

and then the total minimum energy would be

Ẽ(R) = ED(R/Cλ̃) + λ̃(R). (8)

This implies the following claim.
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units per sample. The constant γ is both technology and appli-
cation dependent. That is, in designing a receiver front-end, the
sampling and quantization of the ADC is designed to support
the channel bandwidth and SNR needed for communication at
intended rates. The receiver front-end design choices are then
embodied in the channel from x to y. We refer to this as the
original physical channel and we assume it is memoryless and
has single letter capacity C. As C depends on the performance
of the receiver front-end, which is coupled to the sampling
energy γ, it is useful to think of γ as fixed for a physical
channel of capacity C. Without loss of generality we assume
γ = 1. That is, energy is measured in the unit of the required
energy to take one sample.

A. Energy Trade-off at the Receiver

Here, we examine energy trade-off ignoring the constraints
imposed by the harvesting process or receiver battery size.
The receiver must sample the signal and reliably decode.
Due to the randomness of the energy arrivals, the receiving
process may be interrupted. This can result in only a subset
of transmitted symbols being sampled. On the other hand, a
receiver may choose to sample only a subset of symbols in
order to save energy for future operations. When the code has
block length n and the sampler recovers samples of s out of n
symbols, we say the sampling rate is λ = s/n. We model this
selective sampling as an erasure channel concatenated to the
original physical channel; symbols that are not sampled are
erased. According to [17], if the original physical channel is
memoryless with capacity C and the erasures are independent
of the inputs and outputs of that channel and the proportion of
erasures converges in probability to α (the erasures may have
memory), then the capacity of such a channel is C(1 − α)
where α is the erasure probability and C is the capacity of
the original channel. Thus sampling at rate λ corresponds
to erasures at rate α = 1 − λ. Fixing a sufficiently long
blocklength n will ensure that a codeword that is sampled
at rate λ will be decoded correctly with high probability if
R < λC.

In models of decoding in [15], the decoding energy ED is
an increasing function of the code rate R that diverges as R
approaches capacity. While this model is hardware dependent
inasmuch as it assumes LDPC decoding, it motivates the
following abstraction of receiver energy consumption:

• Independent of the channel inputs and outputs, the re-
ceiver collects s out of n symbol samples such that s/n
converges to λ in probability for large n.

• Each symbol sample requires unit energy.
• The decoding energy is nED(R/Cλ) where ED is a con-

vex increasing function of normalized code rate R/Cλ.
Under this model with fixed R and C, the decoding energy
is a non-increasing convex function of the sampling rate as
depicted in Fig. 1. Moreover, the energy consumed by the
receiver to reliably decode one packet will be

nE = s+ nED
(

R

Cλ

)
= n

[
λ+ ED

(
R

Cλ

)]
. (1)
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Fig. 1. Normalized decoding energy f(λ) = ED(R/Cλ) for a fixed R and
C as function of the sampling rate λ. The total energy per symbol of the
receiver is minimized at λ = λ∗.

We conclude for a given n, R, and C that there is an optimal
sampling rate λ∗ = s∗/n such that

E∗(R) = λ∗(R) + ED
(

R

Cλ∗(R)

)
. (2)

is the minimum energy per symbol period required to decode
a single rate R codeword. We may sometimes drop the
variable R. Furthermore, we emphasize that although energy
is expended only on symbols that are sampled, E∗ amortizes
the energy cost of sampling over all symbols, sampled or not.

We recognize that this is a speculative model of a receiver;
the most questionable assumption is that the decoding energy
grows linearly for fixed code rate R and channel capac-
ity C. We do note that this model is consistent with the
conjecture that the decoding complexity of LDPC grows as
O((n/δ) ln(1/δ)) where δ = 1−R/Cλ [13], [14].

In addition, we observe that this model does impose re-
strictions that preclude certain performance enhancements.
For example, in a slowly varying channel, the receiver could
exploit channel state information (CSI) to collect its symbol
samples when the channel is unusually good. Similarly, the
transmitter and receiver could coordinate transmission and
reception so that a power-constrained transmitter could use
more power for those symbols that the receiver will sample. A
coordinated sleep protocol is the limiting case of this approach.

B. Energy Harvesting Models
The energy provided by the environment can be described

by a discrete time exogenous stochastic process Wt of energy
arrivals in each symbol period. The harvesting process often
has considerable memory. For a solar collector, the full range
of harvesting rates may be revealed over several days.

Here we assume that energy w̄ arrives deterministically
in every symbol period. We believe this is an appropriate
model when code words are transmitted in milliseconds and
the coherence time of the energy harvesting process is on the
order of minutes or hours. On the other hand, when codewords
are much longer than the harvesting coherence time, it also
can be shown that system performance chiefly depends on the
average harvesting rate w̄ = E [Wt].

•  C = capacity of original channel 
•  λ = sampling rate=1- erasure rate  
    Cλ = capacity of the new channel  
  
[S. Verdu and T. Weissman, 2008]  

Capacity=C •  Conjecture: Decoding energy is an increasing function of the 
code rate R that diverges as R approaches capacity: 

[A. Khandekar and R.J. McEliece, 2001] 

[T. Richardson and R. Urbanke, 2003] 

units per sample. The constant γ is both technology and appli-
cation dependent. That is, in designing a receiver front-end, the
sampling and quantization of the ADC is designed to support
the channel bandwidth and SNR needed for communication at
intended rates. The receiver front-end design choices are then
embodied in the channel from x to y. We refer to this as the
original physical channel and we assume it is memoryless and
has single letter capacity C. As C depends on the performance
of the receiver front-end, which is coupled to the sampling
energy γ, it is useful to think of γ as fixed for a physical
channel of capacity C. Without loss of generality we assume
γ = 1. That is, energy is measured in the unit of the required
energy to take one sample.

A. Energy Trade-off at the Receiver

Here, we examine energy trade-off ignoring the constraints
imposed by the harvesting process or receiver battery size.
The receiver must sample the signal and reliably decode.
Due to the randomness of the energy arrivals, the receiving
process may be interrupted. This can result in only a subset
of transmitted symbols being sampled. On the other hand, a
receiver may choose to sample only a subset of symbols in
order to save energy for future operations. When the code has
block length n and the sampler recovers samples of s out of n
symbols, we say the sampling rate is λ = s/n. We model this
selective sampling as an erasure channel concatenated to the
original physical channel; symbols that are not sampled are
erased. According to [17], if the original physical channel is
memoryless with capacity C and the erasures are independent
of the inputs and outputs of that channel and the proportion of
erasures converges in probability to α (the erasures may have
memory), then the capacity of such a channel is C(1 − α)
where α is the erasure probability and C is the capacity of
the original channel. Thus sampling at rate λ corresponds
to erasures at rate α = 1 − λ. Fixing a sufficiently long
blocklength n will ensure that a codeword that is sampled
at rate λ will be decoded correctly with high probability if
R < λC.

In models of decoding in [15], the decoding energy ED is
an increasing function of the code rate R that diverges as R
approaches capacity. While this model is hardware dependent
inasmuch as it assumes LDPC decoding, it motivates the
following abstraction of receiver energy consumption:

• Independent of the channel inputs and outputs, the re-
ceiver collects s out of n symbol samples such that s/n
converges to λ in probability for large n.

• Each symbol sample requires unit energy.
• The decoding energy is nED(R/Cλ) where ED is a con-

vex increasing function of normalized code rate R/Cλ.
Under this model with fixed R and C, the decoding energy
is a non-increasing convex function of the sampling rate as
depicted in Fig. 1. Moreover, the energy consumed by the
receiver to reliably decode one packet will be

nE = s+ nED
(
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)
= n
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Fig. 1. Normalized decoding energy f(λ) = ED(R/Cλ) for a fixed R and
C as function of the sampling rate λ. The total energy per symbol of the
receiver is minimized at λ = λ∗.

We conclude for a given n, R, and C that there is an optimal
sampling rate λ∗ = s∗/n such that

E∗(R) = λ∗(R) + ED
(

R

Cλ∗(R)

)
. (2)

is the minimum energy per symbol period required to decode
a single rate R codeword. We may sometimes drop the
variable R. Furthermore, we emphasize that although energy
is expended only on symbols that are sampled, E∗ amortizes
the energy cost of sampling over all symbols, sampled or not.

We recognize that this is a speculative model of a receiver;
the most questionable assumption is that the decoding energy
grows linearly for fixed code rate R and channel capac-
ity C. We do note that this model is consistent with the
conjecture that the decoding complexity of LDPC grows as
O((n/δ) ln(1/δ)) where δ = 1−R/Cλ [13], [14].

In addition, we observe that this model does impose re-
strictions that preclude certain performance enhancements.
For example, in a slowly varying channel, the receiver could
exploit channel state information (CSI) to collect its symbol
samples when the channel is unusually good. Similarly, the
transmitter and receiver could coordinate transmission and
reception so that a power-constrained transmitter could use
more power for those symbols that the receiver will sample. A
coordinated sleep protocol is the limiting case of this approach.

B. Energy Harvesting Models
The energy provided by the environment can be described

by a discrete time exogenous stochastic process Wt of energy
arrivals in each symbol period. The harvesting process often
has considerable memory. For a solar collector, the full range
of harvesting rates may be revealed over several days.

Here we assume that energy w̄ arrives deterministically
in every symbol period. We believe this is an appropriate
model when code words are transmitted in milliseconds and
the coherence time of the energy harvesting process is on the
order of minutes or hours. On the other hand, when codewords
are much longer than the harvesting coherence time, it also
can be shown that system performance chiefly depends on the
average harvesting rate w̄ = E [Wt].
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Fig. 4. Fixed timing policy: Intervals labeled “C,” “S,” and “D” mark when
the receiver is (C)harging the battery, (S)ampling a packet, and (D)ecoding
that packet.

The condition in Theorem 2 requires that the decoding task
is sufficiently energy-hungry to guarantee that the backlog
always grows during the sampling phase of the protocol.

Before presenting the proof, we first describe the scheme.
As shown in Fig. 4, we employ a K slot sampling frame
in which the first K − 1 slots are used for energy harvesting
(and the transmitted packets are ignored) followed by sampling
the packet in slot K. We sample L packets using L such
sampling frames. We again assume that Ẽ(R) ≥ w̄ ; otherwise
all the packets are decoded. In the following theorem, for a
fixed code rate R and fixed-timing assumption, we will give
an achievability scheme under a condition that guarantees that
no energy loss happens.

Proof: Referring to Fig. 4, consider the following scheme:

1) Given an integer L, let i = 1, K =
⌈
λ̃/w̄

⌉
and

M =
⌈(

LED(R/Cλ̃)− LKw̄ + Lλ̃
)
/w̄

⌉
. (19)

2) Collect energy n(λ̃ − w̄) in the first K − 1 slots of
sampling frame i; drop the corresponding K−1 packets.

3) After battery charging, there may be time left at the end
of slot K − 1. Use the residual energy harvested in this
time interval for decoding the backlog, if it is not empty.

4) Sample packet K at rate λ̃ and save it in the decoding
backlog.

5) i← i+ 1. If i ≤ L go to step 2.
6) For the next M slots decode the backlog.

From (19), the packet rate can be obtained as

ρ(L) =
nLR

nLK + nM
=

LR⌈
LED(R/Cλ̃)/w̄ + Lλ̃/w̄

⌉ . (20)

As L goes to infinity,

ρ = lim
L→∞

ρ(L) =
w̄R

ED(R/Cλ̃) + λ̃
. (21)

When the decoding energy is so small that the above fixed
timing policy results in discarded energy, neither finding an
optimum policy nor tightening the previous outer bound appear
to be straightforward tasks. However, we note that it can be
shown that the outer bound rate (12) can be achieved by
increasing the size of the battery in order to store the energy
that would otherwise be discarded.

VI. DISCUSSION

Based on a simple model for receiver energy consumption,
we have shown in this work that reliable communication to an
energy harvesting receiver can be constrained by the energy
harvesting rate as well as the battery size. We have also
found that a variable-timing transmission scheme in which the
transmitter sends packet when the receiver is ready to sample
and decode can achieve an outer bound based on receiver
energy conservation.

These conclusions have been reached using the simplest
model of deterministic energy arrivals in every symbol period.
We expect that the results derived here will also hold under
stochastyic energy arrivals if the codewords are long enough
to experience the ergodic variation of the harvesting.
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Fig. 2. Variable-timing optimum policy: Transmitted packets are labeled
x1,x2, . . . while intervals marked “C,” “S,” and “D” mark when the receiver
is (C)harging the battery, (S)ampling a packet, and (D)ecoding that packet.
The corresponding graph depicts the receiver’s stored energy.

C. Performance Metrics
Assume that the transmitter sends packets/codewords

1, . . . , N(t) by time t while packet i is encoded at rate Ri.
We define the reliable communication rate as the number of
information bits that are decoded per symbol period. It is
denoted by ρ and defined as

ρ(t) =
1

t

N(t)∑

i=1

RiIi, (3)

where the indicator Ii = 1 if the receiver reliably decodes
packet i. We assume that all packets are sent at a fixed rate
R and we seek to find the maximum reliable communication
rate, over any possible policy.

III. VARIABLE TIMING

Now we derive the maximum reliable communication rate
when the transmitter follows a variable-timing protocol. In
particular if the battery size is large enough we have the
freedom to design a policy that samples packets at the optimal
rate λ∗(R). However, sampling a packet is an online process
that must be completed during the transmission slot of that
packet. Thus sampling rate may be constrained by the receiver
energy that is available in that slot. We assume that w̄ < E∗;
otherwise, all packets will be decoded. We note that the arrival
energy in an n-symbol packet is nw̄, which scales with n. We
will see that the battery size must also scale with n. Thus,
we describe an energy harvesting system by a battery growth
rate β such that we employ a battery of size B = βn when
the block length is n. Here we assume that the code rate R
is fixed and derive the maximum reliable communication rate.
Optimization over R is deferred to Section IV.

A. Achievability
Variable-timing provides the flexibility to send the next

packet when the receiver is ready. As depicted in Fig. 2, the
transmitter sends packet xi following an idle period of duration
τi−1 that enables the receiver to decode the previous packet
and recharge the battery for sampling. Specifically, as shown
in the figure, the receiver starts by collecting energy n(λ− w̄)
in time τ0. Next, the transmitter sends packet x1 in slot 1 and
the receiver samples this packet while also harvesting energy
at rate w̄. However, when λ > w̄, sampling the packet drains
the receiver battery such that the battery is empty at the end
of the slot. What follows is a decoding period in which the
receiver decodes the sampled packet. The receiver stores no

energy in this interval because the decoder is run on a “pay as
you go” basis; the decoder runs at a speed such that its energy
consumption is matched to the energy harvesting rate w̄. When
decoding of packet x1 is completed, the receiver stores energy
at rate w̄ in preparation for sampling the next packet. This
process of sampling and decoding packet i and recharging the
battery for packet i+ 1 is repeated for each packet. The time
needed for decoding and recharging the battery is given by

τi =
nεD(R/Cλ) + n(λ− w̄)

w̄
, i = 1, . . . , L, (4)

since energy nED(R/Cλ) is collected for decoding and energy
n(λ−w̄) is harvested to recharge the battery prior to sampling
the next packet. When this stored energy is added to the energy
nw̄ that is harvested while sampling, the receiver will have suf-
ficient energy to sample at rate λ. After transmitting L packets,
each carrying nR information bits, the communication rate is

ρ(L) =
nLR

Ln+
∑L

i=0 τi
. (5)

From (4) and (5) that we obtain the communication rate

ρ = lim
L→∞

ρ(L) =
w̄R

εD(R/Cλ) + λ
. (6)

Thus, to maximize the communication rate, we need to min-
imize the total required energy. According to Fig. 1 , we can
see that if there is no bound on the battery size, this minimum
will happen at the sampling rate λ∗. However, for a limited
battery, we must consider three possibilities,

• λ∗ ≤ w̄: There is no need to store energy for sampling
before the block starts. Since enough energy arrives in
each symbol period, the packet can be sampled while
no energy is stored in the battery. To minimize the total
energy requirement, we set the sampling rate to λ∗.

• w̄ < λ∗ < β + w̄: The energy collected in one block is
not enough to sample at rate λ∗. However, the battery has
enough capacity to store such energy. It implies that some
time should be spent before sampling to collect required
energy for sampling at rate λ∗.

• β + w̄ < λ∗: Not only is the energy collected in one
slot insufficient for sampling at rate λ∗, the battery is
also not big enough to enable sampling at this rate. By
fully charging the battery prior to sampling, the largest
possible sampling rate is β + w̄. As shown in Fig. 1,
the convexity of the decoding energy function dictates
that the minimum total energy happens at the maximum
sampling rate. Therefore, to maximize the communication
rate, we should set the sampling rate at β + w̄.

Thus the sampling rate at which the energy requirement is
minimum is

λ̃(R) = min {λ∗(R),β + w̄}, (7)

and then the total minimum energy would be

Ẽ(R) = ED(R/Cλ̃) + λ̃(R). (8)

This implies the following claim.

Theorem 1. A variable-timing transmission system with pack-
ets encoded at rate R can achieve the communication rate

ρ =
wR

Ẽ(R)
. (9)

B. Outer Bound

Assume that from L transmitted blocks of data encoded
at rate R, K blocks are decoded. We assume that between
packets i and i + 1, there is an idle time τi in which energy
is harvested but no message is received.

Energy conservation dictates that the total consumed energy
cannot exceed the total arrival energy plus what is stored in a
fully charged battery. According to (8), the minimum energy
required to decode a packet is Ẽ(R), implying

KnẼ(R) ≤ w̄ (Ln+ τ) + βn. (10)

where τ =
∑L

i=1 τi is the total idle time. It follows from (10)
that

ρ(L) =
KnR

Ln+ τ
≤ wR

Ẽ(R)
+

βnR

(Ln+ τ)Ẽ(R)
. (11)

This implies

ρ = lim
L→∞

ρ(L) ≤ wR

Ẽ(R)
. (12)

Thus, when packets are sent at rate R, the achievable rate in (9)
is optimum. This is not surprising as (12) is based simply on
energy conservation at the receiver and the key feature of the
achievable scheme is that no energy is wasted at the receiver.

IV. PROPERTIES OF THE OPTIMUM RATE

So far we studied the maximum communication rate for a
fixed code rate R with variable-timing transmission. Now, we
look at the maximization problem over both sampling rate and
the code rate. Since we have observed that the sampling rate
cannot exceed

λmax ! min {β + w̄, 1} , (13)

we wish to solve the following problem:

ρ̂ =max
R,λ

wR

E(R)
(14a)

s.t. 0 < R < Cλ (14b)
λ ≤ λmax. (14c)

We assume that ED(R/Cλ) is zero only at R = 0. Also
we assume that the function of ED(z), where z = R/Cλ,
is differentiable.

According to the KKT optimality conditions, complemen-
tary slackness implies that the Lagrange multipliers corre-
sponding to the strict inequalities should be zero. Defining
µ as the Lagrange multiplier, the Lagrangian is

L(λ, R, µ) =
wR

ED(R/Cλ) + λ
− µ(λmax − λ). (15)

R

ρ

ρ̂

λ̂ = λmax

R̂

ρ λ̃

λ̃

Fig. 3. The black and blue curve depict the reliable communication rate and
the optimum sampling rate (for each code rate) versus code rate respectively.
It can be seen that ρ is maximized when the sampling rate takes its maximum.

If µ = 0, then, ∂L/∂λ = 0 and ∂L/∂R = 0, yielding

1− R

Cλ2
E ′
D(

R

Cλ
) = 0 (16a)

ED(
R

Cλ
) + λ− R

Cλ
E ′
D(

R

Cλ
) = 0. (16b)

Eq. (16) gives ED(R/Cλ) = 0, implying R̂ = 0, which
conflicts with our modeling assumptions. So, µ #= 0 and,
according to complementary slackness, the constraint (14c)
should be active at the optimum point. So, λ̂ = λmax at this
point and

d

dR

(
wR

ED(R/Cλmax) + λmax

)
|R=R̂ = 0. (17)

This implies

ED(
R̂

Cλmax
) = E ′

D(
R̂

Cλmax
)

R̂

Cλmax
− λmax. (18)

Then, for the optimum communication rate we will have

ρ̂ =
w̄Cλmax

E ′
D(R̂/Cλmax)

.

This solution is depicted in Fig. 3 .

V. FIXED TIMING

The traditional method of transmission is fixed timing: the
transmitter always sends the next packet without any delay.
Since fixed timing is a special case of variable timing, the outer
bound (12) holds for fixed-timing. However, this rate may not
be achievable. There may be a mismatch between the integer
number of time slots between sampled packets and the time
required to charge the battery prior to sampling. Specifically,
i slots may not be sufficient to charge the battery but charging
for i + 1 slots may exceed the battery capacity, resulting in
energy being discarded. One possibility is to use this excess
energy to decode the backlog of already-sampled blocks. But
if the required decoding energy is small, the decoding backlog
may be insufficient to absorb the excess energy.

For fixed timing, we make the following claim.

Theorem 2. If ED(R/Cλ̃) + λ̃ ≥ w̄
⌈
λ̃/w̄

⌉
, then the outer

bound (12) is achievable under fixed timing.

Theorem 1. A variable-timing transmission system with pack-
ets encoded at rate R can achieve the communication rate

ρ =
wR

Ẽ(R)
. (9)

B. Outer Bound

Assume that from L transmitted blocks of data encoded
at rate R, K blocks are decoded. We assume that between
packets i and i + 1, there is an idle time τi in which energy
is harvested but no message is received.

Energy conservation dictates that the total consumed energy
cannot exceed the total arrival energy plus what is stored in a
fully charged battery. According to (8), the minimum energy
required to decode a packet is Ẽ(R), implying

KnẼ(R) ≤ w̄ (Ln+ τ) + βn. (10)

where τ =
∑L

i=1 τi is the total idle time. It follows from (10)
that

ρ(L) =
KnR
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Ẽ(R)
+

βnR

(Ln+ τ)Ẽ(R)
. (11)

This implies

ρ = lim
L→∞

ρ(L) ≤ wR

Ẽ(R)
. (12)

Thus, when packets are sent at rate R, the achievable rate in (9)
is optimum. This is not surprising as (12) is based simply on
energy conservation at the receiver and the key feature of the
achievable scheme is that no energy is wasted at the receiver.

IV. PROPERTIES OF THE OPTIMUM RATE

So far we studied the maximum communication rate for a
fixed code rate R with variable-timing transmission. Now, we
look at the maximization problem over both sampling rate and
the code rate. Since we have observed that the sampling rate
cannot exceed

λmax ! min {β + w̄, 1} , (13)

we wish to solve the following problem:

ρ̂ =max
R,λ

wR

E(R)
(14a)

s.t. 0 < R < Cλ (14b)
λ ≤ λmax. (14c)

We assume that ED(R/Cλ) is zero only at R = 0. Also
we assume that the function of ED(z), where z = R/Cλ,
is differentiable.

According to the KKT optimality conditions, complemen-
tary slackness implies that the Lagrange multipliers corre-
sponding to the strict inequalities should be zero. Defining
µ as the Lagrange multiplier, the Lagrangian is

L(λ, R, µ) =
wR

ED(R/Cλ) + λ
− µ(λmax − λ). (15)
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The traditional method of transmission is fixed timing: the
transmitter always sends the next packet without any delay.
Since fixed timing is a special case of variable timing, the outer
bound (12) holds for fixed-timing. However, this rate may not
be achievable. There may be a mismatch between the integer
number of time slots between sampled packets and the time
required to charge the battery prior to sampling. Specifically,
i slots may not be sufficient to charge the battery but charging
for i + 1 slots may exceed the battery capacity, resulting in
energy being discarded. One possibility is to use this excess
energy to decode the backlog of already-sampled blocks. But
if the required decoding energy is small, the decoding backlog
may be insufficient to absorb the excess energy.
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, then the outer
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Fig. 2. Variable-timing optimum policy: Transmitted packets are labeled
x1,x2, . . . while intervals marked “C,” “S,” and “D” mark when the receiver
is (C)harging the battery, (S)ampling a packet, and (D)ecoding that packet.
The corresponding graph depicts the receiver’s stored energy.

C. Performance Metrics
Assume that the transmitter sends packets/codewords

1, . . . , N(t) by time t while packet i is encoded at rate Ri.
We define the reliable communication rate as the number of
information bits that are decoded per symbol period. It is
denoted by ρ and defined as

ρ(t) =
1

t

N(t)∑

i=1

RiIi, (3)

where the indicator Ii = 1 if the receiver reliably decodes
packet i. We assume that all packets are sent at a fixed rate
R and we seek to find the maximum reliable communication
rate, over any possible policy.

III. VARIABLE TIMING

Now we derive the maximum reliable communication rate
when the transmitter follows a variable-timing protocol. In
particular if the battery size is large enough we have the
freedom to design a policy that samples packets at the optimal
rate λ∗(R). However, sampling a packet is an online process
that must be completed during the transmission slot of that
packet. Thus sampling rate may be constrained by the receiver
energy that is available in that slot. We assume that w̄ < E∗;
otherwise, all packets will be decoded. We note that the arrival
energy in an n-symbol packet is nw̄, which scales with n. We
will see that the battery size must also scale with n. Thus,
we describe an energy harvesting system by a battery growth
rate β such that we employ a battery of size B = βn when
the block length is n. Here we assume that the code rate R
is fixed and derive the maximum reliable communication rate.
Optimization over R is deferred to Section IV.

A. Achievability
Variable-timing provides the flexibility to send the next

packet when the receiver is ready. As depicted in Fig. 2, the
transmitter sends packet xi following an idle period of duration
τi−1 that enables the receiver to decode the previous packet
and recharge the battery for sampling. Specifically, as shown
in the figure, the receiver starts by collecting energy n(λ− w̄)
in time τ0. Next, the transmitter sends packet x1 in slot 1 and
the receiver samples this packet while also harvesting energy
at rate w̄. However, when λ > w̄, sampling the packet drains
the receiver battery such that the battery is empty at the end
of the slot. What follows is a decoding period in which the
receiver decodes the sampled packet. The receiver stores no

energy in this interval because the decoder is run on a “pay as
you go” basis; the decoder runs at a speed such that its energy
consumption is matched to the energy harvesting rate w̄. When
decoding of packet x1 is completed, the receiver stores energy
at rate w̄ in preparation for sampling the next packet. This
process of sampling and decoding packet i and recharging the
battery for packet i+ 1 is repeated for each packet. The time
needed for decoding and recharging the battery is given by

τi =
nεD(R/Cλ) + n(λ− w̄)

w̄
, i = 1, . . . , L, (4)

since energy nED(R/Cλ) is collected for decoding and energy
n(λ−w̄) is harvested to recharge the battery prior to sampling
the next packet. When this stored energy is added to the energy
nw̄ that is harvested while sampling, the receiver will have suf-
ficient energy to sample at rate λ. After transmitting L packets,
each carrying nR information bits, the communication rate is

ρ(L) =
nLR

Ln+
∑L

i=0 τi
. (5)

From (4) and (5) that we obtain the communication rate

ρ = lim
L→∞

ρ(L) =
w̄R

εD(R/Cλ) + λ
. (6)

Thus, to maximize the communication rate, we need to min-
imize the total required energy. According to Fig. 1 , we can
see that if there is no bound on the battery size, this minimum
will happen at the sampling rate λ∗. However, for a limited
battery, we must consider three possibilities,

• λ∗ ≤ w̄: There is no need to store energy for sampling
before the block starts. Since enough energy arrives in
each symbol period, the packet can be sampled while
no energy is stored in the battery. To minimize the total
energy requirement, we set the sampling rate to λ∗.

• w̄ < λ∗ < β + w̄: The energy collected in one block is
not enough to sample at rate λ∗. However, the battery has
enough capacity to store such energy. It implies that some
time should be spent before sampling to collect required
energy for sampling at rate λ∗.

• β + w̄ < λ∗: Not only is the energy collected in one
slot insufficient for sampling at rate λ∗, the battery is
also not big enough to enable sampling at this rate. By
fully charging the battery prior to sampling, the largest
possible sampling rate is β + w̄. As shown in Fig. 1,
the convexity of the decoding energy function dictates
that the minimum total energy happens at the maximum
sampling rate. Therefore, to maximize the communication
rate, we should set the sampling rate at β + w̄.

Thus the sampling rate at which the energy requirement is
minimum is

λ̃(R) = min {λ∗(R),β + w̄}, (7)

and then the total minimum energy would be

Ẽ(R) = ED(R/Cλ̃) + λ̃(R). (8)

This implies the following claim.

, if the receiver decodes the packet i reliably. 
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information bits that are decoded per symbol period. It is
denoted by ρ and defined as

ρ(t) =
1

t

N(t)∑

i=1

RiIi, (3)

where the indicator Ii = 1 if the receiver reliably decodes
packet i. We assume that all packets are sent at a fixed rate
R and we seek to find the maximum reliable communication
rate, over any possible policy.
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Now we derive the maximum reliable communication rate
when the transmitter follows a variable-timing protocol. In
particular if the battery size is large enough we have the
freedom to design a policy that samples packets at the optimal
rate λ∗(R). However, sampling a packet is an online process
that must be completed during the transmission slot of that
packet. Thus sampling rate may be constrained by the receiver
energy that is available in that slot. We assume that w̄ < E∗;
otherwise, all packets will be decoded. We note that the arrival
energy in an n-symbol packet is nw̄, which scales with n. We
will see that the battery size must also scale with n. Thus,
we describe an energy harvesting system by a battery growth
rate β such that we employ a battery of size B = βn when
the block length is n. Here we assume that the code rate R
is fixed and derive the maximum reliable communication rate.
Optimization over R is deferred to Section IV.

A. Achievability
Variable-timing provides the flexibility to send the next

packet when the receiver is ready. As depicted in Fig. 2, the
transmitter sends packet xi following an idle period of duration
τi−1 that enables the receiver to decode the previous packet
and recharge the battery for sampling. Specifically, as shown
in the figure, the receiver starts by collecting energy n(λ− w̄)
in time τ0. Next, the transmitter sends packet x1 in slot 1 and
the receiver samples this packet while also harvesting energy
at rate w̄. However, when λ > w̄, sampling the packet drains
the receiver battery such that the battery is empty at the end
of the slot. What follows is a decoding period in which the
receiver decodes the sampled packet. The receiver stores no

energy in this interval because the decoder is run on a “pay as
you go” basis; the decoder runs at a speed such that its energy
consumption is matched to the energy harvesting rate w̄. When
decoding of packet x1 is completed, the receiver stores energy
at rate w̄ in preparation for sampling the next packet. This
process of sampling and decoding packet i and recharging the
battery for packet i+ 1 is repeated for each packet. The time
needed for decoding and recharging the battery is given by
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nw̄ that is harvested while sampling, the receiver will have suf-
ficient energy to sample at rate λ. After transmitting L packets,
each carrying nR information bits, the communication rate is
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From (4) and (5) that we obtain the communication rate

ρ = lim
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Thus, to maximize the communication rate, we need to min-
imize the total required energy. According to Fig. 1 , we can
see that if there is no bound on the battery size, this minimum
will happen at the sampling rate λ∗. However, for a limited
battery, we must consider three possibilities,

• λ∗ ≤ w̄: There is no need to store energy for sampling
before the block starts. Since enough energy arrives in
each symbol period, the packet can be sampled while
no energy is stored in the battery. To minimize the total
energy requirement, we set the sampling rate to λ∗.

• w̄ < λ∗ < β + w̄: The energy collected in one block is
not enough to sample at rate λ∗. However, the battery has
enough capacity to store such energy. It implies that some
time should be spent before sampling to collect required
energy for sampling at rate λ∗.

• β + w̄ < λ∗: Not only is the energy collected in one
slot insufficient for sampling at rate λ∗, the battery is
also not big enough to enable sampling at this rate. By
fully charging the battery prior to sampling, the largest
possible sampling rate is β + w̄. As shown in Fig. 1,
the convexity of the decoding energy function dictates
that the minimum total energy happens at the maximum
sampling rate. Therefore, to maximize the communication
rate, we should set the sampling rate at β + w̄.

Thus the sampling rate at which the energy requirement is
minimum is

λ̃(R) = min {λ∗(R),β + w̄}, (7)

and then the total minimum energy would be

Ẽ(R) = ED(R/Cλ̃) + λ̃(R). (8)
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= the code rate of packet i. 
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since energy nED(R/Cλ) is collected for decoding and energy
n(λ−w̄) is harvested to recharge the battery prior to sampling
the next packet. When this stored energy is added to the energy
nw̄ that is harvested while sampling, the receiver will have suf-
ficient energy to sample at rate λ. After transmitting L packets,
each carrying nR information bits, the communication rate is

ρ(L) =
nLR

Ln+
∑L

i=0 τi
. (5)

From (4) and (5) that we obtain the communication rate

ρ = lim
L→∞

ρ(L) =
w̄R

εD(R/Cλ) + λ
. (6)

Thus, to maximize the communication rate, we need to min-
imize the total required energy. According to Fig. 1 , we can
see that if there is no bound on the battery size, this minimum
will happen at the sampling rate λ∗. However, for a limited
battery, we must consider three possibilities,

• λ∗ ≤ w̄: There is no need to store energy for sampling
before the block starts. Since enough energy arrives in
each symbol period, the packet can be sampled while
no energy is stored in the battery. To minimize the total
energy requirement, we set the sampling rate to λ∗.

• w̄ < λ∗ < β + w̄: The energy collected in one block is
not enough to sample at rate λ∗. However, the battery has
enough capacity to store such energy. It implies that some
time should be spent before sampling to collect required
energy for sampling at rate λ∗.

• β + w̄ < λ∗: Not only is the energy collected in one
slot insufficient for sampling at rate λ∗, the battery is
also not big enough to enable sampling at this rate. By
fully charging the battery prior to sampling, the largest
possible sampling rate is β + w̄. As shown in Fig. 1,
the convexity of the decoding energy function dictates
that the minimum total energy happens at the maximum
sampling rate. Therefore, to maximize the communication
rate, we should set the sampling rate at β + w̄.

Thus the sampling rate at which the energy requirement is
minimum is

λ̃(R) = min {λ∗(R),β + w̄}, (7)

and then the total minimum energy would be

Ẽ(R) = ED(R/Cλ̃) + λ̃(R). (8)

This implies the following claim.

= the number of codewords sent by time t. 

Fixed-Timing Transmission: Tx sends codewords without idle periods between 
transmissions. Rx may drop some packets to collect energy or do decoding.  
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w = E[W ]

Summary 

•  At low code rates, the receiver has tradeoff between 
sampling and decoding 

•  Sampling energy, even if it is small, may limit the 
communication rate. 

•  Fixed-timing transmission may not achieve the 
energy constraint outerbound.  

Theorem 1. A variable-timing transmission system with pack-
ets encoded at rate R can achieve the communication rate

ρ ≤ w̄R

Ẽ(R)
. (9)

B. Outer Bound

Assume that from L transmitted blocks of data encoded
at rate R, K blocks are decoded. We assume that between
packets i and i + 1, there is an idle time τi in which energy
is harvested but no message is received.

Energy conservation dictates that the total consumed energy
cannot exceed the total arrival energy plus what is stored in a
fully charged battery. According to (8), the minimum energy
required to decode a packet is Ẽ(R), implying

KnẼ(R) ≤ w̄ (Ln+ τ) + βn. (10)

where τ =
∑L

i=1 τi is the total idle time. It follows from (10)
that

ρ(L) =
KnR

Ln+ τ
≤ wR

Ẽ(R)
+

βnR

(Ln+ τ)Ẽ(R)
. (11)

This implies

ρ = lim
L→∞

ρ(L) ≤ wR

Ẽ(R)
. (12)

Thus, when packets are sent at rate R, the achievable rate in (9)
is optimum. This is not surprising as (12) is based simply on
energy conservation at the receiver and the key feature of the
achievable scheme is that no energy is wasted at the receiver.

IV. PROPERTIES OF THE OPTIMUM RATE

So far we studied the maximum communication rate for a
fixed code rate R with variable-timing transmission. Now, we
look at the maximization problem over both sampling rate and
the code rate. Since we have observed that the sampling rate
cannot exceed

λmax ! min {β + w̄, 1} , (13)

we wish to solve the following problem:

ρ̂ =max
R,λ

wR

E(R)
(14a)

s.t. 0 < R < Cλ (14b)
λ ≤ λmax. (14c)

We assume that ED(R/Cλ) is zero only at R = 0. Also
we assume that the function of ED(z), where z = R/Cλ,
is differentiable.

According to the KKT optimality conditions, complemen-
tary slackness implies that the Lagrange multipliers corre-
sponding to the strict inequalities should be zero. Defining
µ as the Lagrange multiplier, the Lagrangian is

L(λ, R, µ) =
wR

ED(R/Cλ) + λ
− µ(λmax − λ). (15)

R

ρ

ρ̂

λ̂ = λmax

R̂

ρ λ̃

λ̃

Fig. 3. The black and blue curve depict the reliable communication rate and
the optimum sampling rate (for each code rate) versus code rate respectively.
It can be seen that ρ is maximized when the sampling rate takes its maximum.

If µ = 0, then, ∂L/∂λ = 0 and ∂L/∂R = 0, yielding

1− R

Cλ2
E ′
D(

R

Cλ
) = 0 (16a)

ED(
R

Cλ
) + λ− R

Cλ
E ′
D(

R

Cλ
) = 0. (16b)

Eq. (16) gives ED(R/Cλ) = 0, implying R̂ = 0, which
conflicts with our modeling assumptions. So, µ #= 0 and,
according to complementary slackness, the constraint (14c)
should be active at the optimum point. So, λ̂ = λmax at this
point and

d

dR

(
wR

ED(R/Cλmax) + λmax

)
|R=R̂ = 0. (17)

This implies

ED(
R̂

Cλmax
) = E ′

D(
R̂

Cλmax
)

R̂

Cλmax
− λmax. (18)

Then, for the optimum communication rate we will have

ρ̂ =
w̄Cλmax

E ′
D(R̂/Cλmax)

.

This solution is depicted in Fig. 3 .

V. FIXED TIMING

The traditional method of transmission is fixed timing: the
transmitter always sends the next packet without any delay.
Since fixed timing is a special case of variable timing, the outer
bound (12) holds for fixed-timing. However, this rate may not
be achievable. There may be a mismatch between the integer
number of time slots between sampled packets and the time
required to charge the battery prior to sampling. Specifically,
i slots may not be sufficient to charge the battery but charging
for i + 1 slots may exceed the battery capacity, resulting in
energy being discarded. One possibility is to use this excess
energy to decode the backlog of already-sampled blocks. But
if the required decoding energy is small, the decoding backlog
may be insufficient to absorb the excess energy.

For fixed timing, we make the following claim.

Theorem 2. If ED(R/Cλ̃) + λ̃ ≥ w̄
⌈
λ̃/w̄

⌉
, then the outer

bound (12) is achievable under fixed timing.
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V. FIXED TIMING

The traditional method of transmission is fixed timing: the
transmitter always sends the next packet without any delay.
Since fixed timing is a special case of variable timing, the outer
bound (12) holds for fixed-timing. However, this rate may not
be achievable. There may be a mismatch between the integer
number of time slots between sampled packets and the time
required to charge the battery prior to sampling. Specifically,
i slots may not be sufficient to charge the battery but charging
for i + 1 slots may exceed the battery capacity, resulting in
energy being discarded. One possibility is to use this excess
energy to decode the backlog of already-sampled blocks. But
if the required decoding energy is small, the decoding backlog
may be insufficient to absorb the excess energy.

For fixed timing, we make the following claim.
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