The signal design problem in the hyperbolic plane seeks to determine lattices (orders of
quaternion algebras) from which signal constellations are constructed. More specifically, signal constellation is a quotient of an order by one of its ideals. The study of maximal order has its motivation based on the importance that geometrically uniform codes and space-time block codes have in the design of new efficient digital communication systems. The objective of this work is to relate Fuchsian groups to maximal quaternion orders. This enables us to construct lattices in the hyperbolic plane which in turn are used to design signal constellations. he reason for considering maximal orders is that they naturally produce a complete labeling the points of the constellations.

Let $\mathcal{A}=(\alpha, \beta)_{\mathbb{K}}$ be a quaternion algebra over a field \mathbb{K} with basis $\{1, i, j, \boldsymbol{k}\}$ satisfying

$$
i^{2}=\alpha, j^{2}=\beta \text { and } k=i j=-j i,
$$

where $\alpha, \beta \in \mathbb{K} /\{0\}$. Consider $\varphi: \mathcal{A} \longrightarrow M(2, \mathbb{K}(\sqrt{\alpha}))$ where

$$
\varphi(1)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \varphi(i)=\left(\begin{array}{cc}
\sqrt{\alpha} & 0 \\
0 & -\sqrt{\alpha}
\end{array}\right), \varphi(j)=\left(\begin{array}{cc}
0 & 1 \\
\beta & 0
\end{array}\right), \varphi(k)=\left(\begin{array}{cc}
0 & \sqrt{\alpha} \\
-\beta \sqrt{\alpha} & 0
\end{array}\right)
$$

So φ is an isomorphism of $\mathcal{A}=(\alpha, \beta)_{\mathbb{K}}$ in the subalgebra $\boldsymbol{M}(2, \mathbb{K}(\sqrt{\alpha}))$. Each element of \mathcal{A} is identified with

$$
x \longmapsto \varphi(x)=\left(\begin{array}{cc}
x_{0}+x_{1} \sqrt{\alpha} & x_{2}+x_{3} \sqrt{\alpha} \\
\beta\left(x_{2}-x_{3} \sqrt{\alpha}\right) & x_{0}-x_{1} \sqrt{\alpha}
\end{array}\right) .
$$

There is a natural involution in \mathcal{A}, which in a basis satisfying (1) is given by $x=x_{0}+x_{1} i+x_{2} j+x_{3} k \mapsto \bar{x}=x_{0}-x_{1} i-x_{2} j-x_{3} k \in \mathcal{A}$. We define the reduced trace and
 Let $\mathcal{A}=(\alpha, \beta)_{\mathbb{K}}$ be a quaternion algebra and \boldsymbol{R} be a ring with field of fractions \mathbb{K}. An order $\mathcal{O}=(\alpha, \beta)_{R}$ in \mathcal{A} is a subring of \mathcal{A} containing 1 , equivalently, it is a finitely generated
\boldsymbol{R}-module such that $\mathcal{A}=\mathbb{K} \mathcal{O}$. \boldsymbol{R}-module such that $\mathcal{A}=\mathbb{K} \mathcal{O}$.
Proposition [1]:If $\boldsymbol{y} \in \mathcal{O}$, then \boldsymbol{y} is integral over \boldsymbol{R}, that is, $\operatorname{Tr}(\boldsymbol{y}), \operatorname{Nrd}(\boldsymbol{y}) \in \boldsymbol{R}$.
Proposition [3]:Let \mathcal{O} have a free \boldsymbol{R}-basis $\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, y_{3}, y_{4}\right\}$. Then the reduced discriminant $\mathcal{D}(\mathcal{O})$ is the square root of the ideal principal $R \cdot \operatorname{det}\left(\operatorname{Tr}\left(y_{i} \bar{Y}_{j}\right)\right)$. maximal order in \mathcal{A} then the reduced discriminant satisfies $\mathcal{D}(\mathcal{M})=\mathcal{D}(\mathcal{A})$.

We will consider two Euclidean models for the hyperbolic plane: the Upper-half plane $\mathbb{H}{ }^{2}=\{\boldsymbol{z} \in \mathbb{C}: \operatorname{Im}(\boldsymbol{z})>0\}$ and the Poincaré disc $\mathbb{D}^{2}=\{\boldsymbol{z} \in \mathbb{C}:|\boldsymbol{z}|<\mathbf{1}\}$.
Let $P S L(2, \mathbb{R})$ be the set of all Möbius transformations, $T: \mathbb{H}^{2} \longrightarrow \mathbb{H}^{2}$, given Let $\operatorname{PSL}(\mathbf{2}, \mathbb{R})$ be the set of all Möbius transformations, $\boldsymbol{T}: \mathbb{H}^{2} \longrightarrow \mathbb{H}^{2}$, given by
$T_{A}(z)=\boldsymbol{a z + b}$, where $\boldsymbol{a}, \boldsymbol{b} \boldsymbol{c}, \boldsymbol{d} \in \mathbb{R}$ and $a d-b c=1$. A Fuchsian group Γ is a d $T_{A}(z)=\frac{a z+b}{c z+d}$, where $a, b, c, d \in \mathbb{R}$ and $a d-b c=1$. A Fuchsian group Γ is a discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$. If $f: \mathbb{H}^{2} \longrightarrow \mathbb{D}^{2}$ is given by

$$
f(z)=\frac{z i+1}{z+i},
$$

then $\Gamma=f^{-1} \Gamma_{p} f$ is a subgroup of $\operatorname{PSL}(\mathbf{2}, \mathbb{R})$, where $\boldsymbol{T}_{p}: \mathbb{D}^{2} \longrightarrow \mathbb{D}^{2}$ and $\boldsymbol{T}_{p} \in \Gamma_{p}<\operatorname{PSL}(\mathbf{2}, \mathbb{C})$ is such that $T_{p}(z)=\frac{a z+b}{b z+\bar{a}}, a, b \in \mathbb{C},|a|^{2}-|b|^{2}=1$. Furthermore, $\Gamma \simeq \Gamma_{p}$.
Theorem [2]:The group $\lceil[\mathcal{A}, \mathcal{O}]$ associated to quaternion algebra \mathcal{A} and quaternion order \mathcal{O} is isomorphic to $\operatorname{PSL}(2, \mathbb{R})$. Therefore, $\Gamma[\mathcal{A}, \mathcal{O}]$ is a Fuchsian group called arithmetic Fuchsian group and the order \mathcal{O} is called hyperbolic lattice

The Fuchsian Group $\Gamma_{4 g}$

Let $\{4 g, 4 g\}$ be a self-dual tessellation with $g \geq \mathbf{2}$ in the hyperbolic plane and $P_{4 g}$ the associated regular hyperbolic polygon.

Let the edges of $P_{4 g}$ are ordered as follows $u_{1}, \ldots, u_{4 g}$, such that
$T_{i}\left(u_{i}\right)=u_{i+2 g}, i=1, \ldots, 2 g$. If we have the transformation $T_{1} \in \Gamma_{4 g}$ and so the
corresponding matrix \boldsymbol{A}_{1}, the remaining generators are obtained by conjugations of the form

$$
A_{i}=C^{i-1} A_{1} C^{-(i-1)}, i=2, \ldots, 2 g,
$$

where $\boldsymbol{C}=\left(\begin{array}{cc}e^{\frac{i \pi}{G g}} & 0 \\ 0 & e^{-\frac{\pi}{4 g}}\end{array}\right)$ is the matrix corresponding to the elliptic transformation with order $4 g$
The next result give us the form of the matrix $\boldsymbol{A}_{\mathbf{1}}$:
Theorem [4]:Let \boldsymbol{P}_{p} be a hyperbolic regular polygon with \boldsymbol{p} edges and Γ_{p} the Fuchsian group associated with the tessellation $\{p, q\}$. If $\boldsymbol{T}_{1} \in \Gamma_{p}$ is such that $\boldsymbol{T}_{1}\left(u_{1}\right)=u_{1+\frac{p}{2}}$ then the matrix A $_{1}$ associated with the transformation \boldsymbol{T}_{1} is given by

The process of identifying Fuchsian groups derived from a quaternion algebra over a totally real algebraic number field are given by the following results:
Theorem: For each $g=2^{n}, 3 \cdot 2^{n}, 5 \cdot 2^{n}$ and $3 \cdot 5 \cdot 2^{n}$, where $n \in \mathbb{N}$, the elements of a
Fuchsian group Γ are identified, via isomorphism, with the elements of an order
Fuchsian $\mathcal{O}=(\theta,-1)$)
$\mathcal{O}=(\theta,-1)_{\mathbb{Z}[\theta]}$, where

$$
\theta= \begin{cases}\sqrt{2+\sqrt{2+\ldots+\sqrt{2}}} & , \text { for } g=2^{n} ; \\ \sqrt{2+\sqrt{2+\ldots+\sqrt{2+\sqrt{3}}}}, & \text { for } g=3 \cdot 2^{n} ; \\ \sqrt{2+\sqrt{2+\ldots+\sqrt{2+\frac{\sqrt{10+2 \sqrt{5}}}{2}}},}, \text { for } g=5 \cdot 2^{n} ; \\ \sqrt{2+\sqrt{2+\ldots+\frac{\sqrt{7+\sqrt{5}+\sqrt{30+6 \sqrt{5}}}}{2}},}, \text { for } g=3 \cdot 5 \cdot 2^{n} .\end{cases}
$$

Theorem: For each $g=2^{n}, 3 \cdot 2^{n}, 5 \cdot 2^{n}$ and $3 \cdot 5 \cdot 2^{n}$, with $n \in \mathbb{N}$, the Fuchsian group $\Gamma_{4 g}$, associated with the hyperbolic polygon $\mathbf{P}_{4 g}$, is derived from a quaternion algebra $\mathcal{A}=(\theta,-1)_{\mathbb{K}}$, over the number field $\mathbb{K}=\mathbb{Q}(\theta)$, where $[\mathbb{K}: \mathbb{Q}]=2^{n}, 2^{n+1}, 2^{n+2}$ and 2^{n+3} respectively, and θ is as in (6)

Constrution of the arithmetic Fuchsian group Γ_{8} using a maximal order
Now we will show that the arithmetic Fuchsian group Γ_{8} can be construct using a maximal order \mathcal{M}. In this way, we can produce a complete labeling of the points of the associated constellation. Let $\Gamma_{8}=\left\langle T_{1}, T_{2}, T_{3}, T_{4}: T_{1} \circ T_{2}^{-1} \circ T_{3} \circ T_{4}^{-1} \circ T_{1}^{-1} \circ T_{2} \circ T_{3}^{-1} \circ T_{4}=\mid d\right\rangle$ be the Fuchsian group where the transformations T_{i} 's are obtained by (5) and (4). The generators of the
Fuchsian group $\Gamma \simeq \Gamma_{8}$ are given by

$$
G_{i}=f^{-1} A_{i} f, i=1, \cdots, 4
$$

where \boldsymbol{f} is as in (3). Using the software Mathematica we obtain the following generators:

We have that the generators obtained in (7) are identified via the isomorphism (2) with the

$$
\begin{aligned}
& g_{1}=\frac{2+2 \sqrt{2}}{2}+\frac{\sqrt{2}}{2} i-\frac{2+\sqrt{2}}{2} i j, g_{2}=\frac{2+2 \sqrt{2}}{2}+\frac{2+\sqrt{2}}{2} i-\frac{\sqrt{2}}{2} i j, \\
& g_{3}=\frac{2+2 \sqrt{2}}{2}+\frac{2+\sqrt{2}}{2} i+\frac{\sqrt{2}}{2} i j, g_{4}=\frac{2+2 \sqrt{2}}{2}+\frac{\sqrt{2}}{2} i+\frac{2+\sqrt{2}}{2} i j
\end{aligned}
$$

The only prime ideal that is ramified in \mathcal{A} is the principal ideal $\mathcal{I}=\langle\mathbf{0}, \mathbf{1}\rangle \subset \mathbb{Z}[\sqrt{2}]$. Then the discriminant of \mathcal{A} is given by

$$
\mathcal{D}(\mathcal{A})=\langle\sqrt{2}\rangle
$$

$=-j i$.
$\mathcal{O}=\left\{y_{0}+y_{1} i+y_{2} j+y_{3} i j: y_{0}, y_{1}, y_{2}, y_{3} \in \mathbb{Z}[\sqrt{2}]\right\}$
is a quaternion order of \mathcal{A} denoted by $\mathcal{O}=(\sqrt{2},-1)_{R}$ with \mathbb{Z}-basis $\{1, i, j, i j\}$. And

$$
\mathcal{D}(\mathcal{O})=\sqrt{\operatorname{det}\left(\operatorname{Trd}\left(y_{i} \bar{y}_{j}\right)\right)}=\sqrt{32}=4 \sqrt{2} .
$$

As $\mathcal{D}(\mathcal{A}) \neq \mathcal{D}(\mathcal{O})$ then the quaternion order \mathcal{O} is not maximal. As $\mathcal{D}(\mathcal{A}) \neq \mathcal{D}(\mathcal{O}$)
Using the software Magma, we obtain the order $\mathcal{M} \supset \mathcal{O}$ with R-basis

$$
B=\left\{1, i, \frac{1}{2}((\sqrt{2}+1)+\sqrt{2} i+j), \frac{1}{2}((\sqrt{2}+1) i+i j)\right\}
$$

a Johansson, S.: On fundamental domains of arithmetic fuchsian groups.
Math Con 229, 339-349 (2000)
Katok, S.: Fuchsian Groups,
Reiner, I.: Maximal Orders.
Vieira, V.: Arithmetic fuchsian groups identified in quaternion orders for signal constellations construction (in portuguese).
In: Doctoral Thesis, FECC-UNICAMP (2007)

cknowledgments

First we will show that \mathcal{M} characterized by the basis \boldsymbol{B} is indeed an order. For this, we need to show that $\boldsymbol{y} \in \mathcal{M} \Rightarrow \operatorname{Trd}(\boldsymbol{y}), \operatorname{Nrd}(\boldsymbol{y}) \in R=\mathbb{Z}[\sqrt{2}]$, and we have that
$\operatorname{Trd}(1)=2, \operatorname{Nrd}(1)=1, \operatorname{Trd}(i)=0, \operatorname{Nrd}(i)=-\sqrt{2}, \operatorname{Trd}\left(\frac{1}{2}((\sqrt{2}+1)+\sqrt{2} i+j)\right)=\sqrt{2}+$ $\operatorname{Nrd}\left(\frac{1}{2}((\sqrt{2}+1)+\sqrt{2} i+j)\right)=1, \operatorname{Trd}\left(\frac{1}{2}((\sqrt{2}+1) i+i j)\right)=0, \operatorname{Nrd}\left(\frac{1}{2}((\sqrt{2}+1) i+i j)\right)=-\sqrt{2}-$ Furthermore, the discriminant of \mathcal{M} is given by
$\mathcal{D}(\mathcal{M})=\sqrt{\operatorname{det}\left(\operatorname{Trd}\left(y_{i} \bar{y}_{j}\right)\right)}=-\sqrt{2}$.
And so
$\mathcal{D}(\mathcal{M})=\mathcal{D}(\mathcal{A})=\langle\sqrt{2}\rangle$.
Therefore, \mathcal{M} is a maximal order of \mathcal{A}. Now, for associating the elements of the maximal order with the elements of the Fuchsian group T_{8}, we have to show that $g_{1}, g_{2}, g_{3}, g_{4} \in \mathcal{M}$, where $g_{1}, g_{2}, g_{3}, g_{4}$ are as in (8). Indeed, they can be written by linear combination of B
$a_{1}=1+\sqrt{2}, b_{1}=2+2 \sqrt{2}, c_{1}=0, d_{1}=-2-\sqrt{2} \in \mathbb{Z}[\sqrt{2}] \Rightarrow$
$a_{1} \cdot 1+b_{1} \cdot i+c_{1} \cdot \frac{1}{2}((\sqrt{2}+1)+\sqrt{2} i+j)+d_{1} \cdot \frac{1}{2}((\sqrt{2}+1) i+i j)=g_{1}$
$-a_{2}=1+\sqrt{2}, b_{2}=2+2 \sqrt{2}, c_{2}=0, d_{2}=-\sqrt{2} \in \mathbb{Z}(\sqrt{2}] \Rightarrow$
$a_{2} \cdot 1+b_{2} \cdot i+c_{2} \cdot \frac{1}{2}((\sqrt{2}+1)+\sqrt{2} i+j)+d_{2} \cdot \frac{1}{2}((\sqrt{2}+1) i+i j)=g_{2}$
$a_{3}=1+\sqrt{2}, b_{3}=0, c_{3}=0, d_{3}=\sqrt{2} \in \mathbb{Z}[\sqrt{2}] \Rightarrow$
$a_{3} \cdot 1+b_{3} \cdot i+c_{3} \cdot \frac{1}{2}((\sqrt{2}+1)+\sqrt{2} i+j)+d_{3} \cdot \frac{1}{2}((\sqrt{2}+1) i+i j)=g_{3}$
$\left.a_{4}=1+\sqrt{2}, b_{4}=-2-\sqrt{2}, \quad c_{4}=0, d_{4}=2+\sqrt{2} \in \mathbb{2}\right)=0$
$a_{4}=1+\sqrt{2}, b_{4}=-2-\sqrt{2}, c_{4}=0, d_{4}=2+\sqrt{2} \in \mathbb{Z}[\sqrt{2}] \Rightarrow$
$a_{4} \cdot 1+b_{4} \cdot i+c_{4} \cdot \frac{1}{2}((\sqrt{2}+1)+\sqrt{2} i+j)+d_{4} \cdot \frac{1}{2}((\sqrt{2}+1) i+i j)=g_{4}$
In the same way made to the group Γ_{8} we can get maximal orders to the arithmetic Fuchsian groups r_{g} of the tessellation $\{4 g, 4 g\}$ for other values of g. In the table below, we present some
maximal orders for different values of g. maximal orders for different values of g

$\mathbb{Z}[\theta]$-basis \boldsymbol{B} of $\boldsymbol{\mathcal { M }}$

g	θ	$\mathbb{Z}[\theta]$-basis \boldsymbol{B} of \mathcal{M}
3	$2 \sqrt{3}$	$\left.\left\{1, i, \frac{1}{2}(1+(1+\theta) i+j), \frac{1}{2}(1+\theta)+i+k\right)\right\}$
4	$\sqrt{2+\sqrt{2}}$	$\left.\left\{1, i, \frac{1}{2}\left(\theta^{3}+\theta^{2}+1\right)+\theta^{3} i+j\right),-\frac{1}{2 \theta}\left(2+\left(\theta^{3}+\theta^{2}-1\right) i+k\right)\right\}$
5	$\frac{\sqrt{10}+2 \sqrt{5}}{2}$	$\left\{1, i, \frac{1}{2}\left(\theta^{3}+j\right),\left(-\frac{1}{2} \theta+\frac{1}{10^{\theta}}\right)\left(\left(\theta^{3}-2\right) i+k\right)\right\}$
6	$\sqrt{2+\sqrt{3}}$	$\left\{1,-\frac{1}{\theta}, \frac{1}{2}\left(\theta^{3}+\theta+1\right)+\left(\theta^{3}+\theta^{2}+\theta+1\right) i+j\right), \frac{1}{2}\left(\theta^{3}+\theta^{2}+\theta+1\right)+\left(\theta^{3}+\theta+1\right) i+$
8	$\sqrt{2+\sqrt{2+\sqrt{2}}}$	$\left.\left\{1, i, \frac{1}{2}\left(\theta^{7}+\theta^{6}+\theta^{4}+1\right)+\theta^{7} i+j\right),-\frac{1}{2 \theta}\left(2+\left(\theta^{7}+\theta^{6}+\theta^{4}-1\right) i+k\right)\right\}$
10	$\sqrt{2+\frac{\sqrt{10+2 \sqrt{5}}}{2}}$	$\left\{1,-\frac{1}{\theta} i, \frac{1}{2}\left(\theta^{6}+j\right), \frac{1}{2}\left(\theta^{6_{i}}+k\right)\right\}$
12	$\sqrt{2+\sqrt{2+\sqrt{3}}}$	$\begin{gathered} \left\{1,-\frac{1}{\theta}, \frac{1}{2}\left(\left(\theta^{7}+\theta^{6}+\theta^{5}+\theta^{3}+\theta^{2}+\theta+1\right)+\left(\theta^{7}+\theta^{6}+\theta^{5}+\theta^{4}+\theta^{3}+\theta^{2}+\theta+1\right) i+j\right)\right. \\ \left.\frac{1}{2}\left(\left(\theta^{7}+\theta^{6}+\theta^{5}+\theta^{3}+\theta^{2}+\theta+1\right)+\left(\theta^{7}+\theta^{6}+\theta^{5}+\theta^{4}+\theta^{3}+\theta^{2}+\theta+1\right) i+k\right)\right\} \end{gathered}$
15	$\frac{\sqrt{7+\sqrt{5}+\sqrt{30+6 \sqrt{5}}}}{2}$	$\left\{1,-\frac{1}{6}, \frac{1}{2}\left(\theta^{5}+\theta^{3}+\theta+j\right), \frac{1}{2}\left(\left(\theta^{5}+\theta^{3}+\theta\right) i+k\right)\right\}$
20	$\sqrt{2+\sqrt{2+\frac{\sqrt{10+2 \sqrt{5}}}{2}}}$	$\left\{1,-\frac{1}{\theta}, \frac{1}{2}\left(\theta^{12}+j\right), \frac{1}{2}\left(\theta^{12 i}+k\right)\right\}$
30	$\sqrt{2+\frac{\sqrt{7+\sqrt{5}+\sqrt{30+6 \sqrt{5}}}}{2}}$	$\left.\left\{1,-\frac{1}{\theta}, \frac{1}{2},\left(\theta^{10}+\theta^{6}+\theta^{2}+j\right), \frac{1}{2}\left(\theta^{10}+\theta^{6}+\theta^{2}\right) i+k\right)\right\}$

eferences

CSol Diversity and

