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Background
The parameters of a non-invasive 

brain-computer interface (BCI) determine 
the ability of the interface to decode 
electroencephalographic (EEG) brain 
signals to decipher a subject's intentions. 
Usually, the computer must learn these 
parameters during a separate training 
session that takes place before regular 
usage of the BCI.

However, this training session is often 
long and may need to be repeated 
several times for long-term usage. Thus, 
I propose a method of tuning the 
parameters continuously during normal 
usage of the BCI, using the Feedback 
Related Negativity (FRN), a signal 
generated in the anterior cingulate cortex 
that scales with prediction error [1].
 

Motivation
Intellectual Merits – This project explores the mechanics of the 
FRN signal, which has been linked to learning; by creating a model 
of how prediction error is encoded in the brain, we can observe 
how the brain itself learns. Additionally, this project explores 
machine learning concepts based on noisy feedback, which is a 
topic of research in the machine learning community.
 
Broader Impacts - This project will hopefully drastically shorten the 
training time required to use BCIs. It will also enable longer-term 
usage of BCIs between training sessions, as the FRN training will 
continuously retrain the BCI. This functionality is important in 
neural prostheses for the disabled, as a person may wear the 
prosthesis for extended periods of time. Additionally, shorter 
training time will allow end-users to easily attach and remove the 
prosthesis, making this technology much more useful to the public.
 

Goals
1) Develop a method to extract prediction error from FRN signal 
on a trial-by-trial basis.
2) Develop a generic method to use prediction error to train 
parameters of existing BCI.
3) Explore the effect of providing continuous versus discrete 
feedback on the FRN signal.

1) FRN Extraction
The FRN signal is present in the theta band of EEG (around 4-8 
Hz). The prediction error can be extracted by examining signal 
patterns between medial and lateral electrode sites over the 
anterior cingulate cortex [1]. A statistical model for the patterns 
of activations can be created, and a Bayesian inference filter 
can produce the prediction error. Additionally, this statistical 
model will likely be tuned using a system identification algorithm 
like Expectation-Maximization, which iteratively converges on 
model parameters given a general model.
 

2) Training BCI
For this part, I will choose the motor signal BCI, since it has 
applications in neuroprosthetic limbs. Using Common Spatial 
Analytical Patterns to train the motor signal BCI produces a 
characteristic matrix, which can then be used to determine if the 
subject is attempting to move “left” or “right”[3]. For FRN 
training, the relationship between this matrix, the estimated 
classification, and the prediction error must be determined; the 
matrix can then update based on the prediction error, actively 
training the BCI. This method will be generalized, using a 
theoretical approach, to apply this same system to other BCIs.
 

Fig. 1 - EEG Cap for BCI

Fig. 2 - Anterior Cingulate Cortex

Fig. 3 - Generic Block Diagram for Proposed Feedback System

Fig. 4 - One FRN Trial; FRN Signal should appear ~250 ms after stimulus

Fig. 5 - Ball used for Feedback; when small ball grows to size of 
large ball, the large ball will move to either the left or right, 
providing feedback to the user

3) Continuous Feedback
The vast majority of FRN studies deal with purely discrete 
feedback; I propose to study how the FRN responds to 
more continuous feedback, as well as its' use in BCI 
training. Since most feedback in the real world is 
continuous, this goal is important for any kind of neural 
prosthesis implementation. Using the same methodology 
as utilized in Goal 1, data from using continuous feedback 
will be acquired. A model of how the FRN behaves 
temporally with continuous feedback will be created both 
theoretically from extending the discrete case and 
empirically from the data. This will eventually be applied to 
a BCI in the same fashion as in Goal 2.
 

Fig. 6 - Continuous Feedback; when the small ball escapes the large 
ball, the large ball moves in the direction of the small ball

Potential Pitfalls
1) Extracting the FRN from EEG data is non-trivial, due to 
movement artifacts and eye-blinks, especially since the 
FRN is not generated on the outside cortex. This can be 
addressed with an artifact rejection scheme using an 
algorithm like Independent Component Analysis [4].
2) Since the brain learns at the same time as the machine, 
this project treads on coadaptive systems. To complete 
this project, I may have to adopt a model for the brain's 
learning as well as the machine's learning.
3) Continuous feedback will probably smear the FRN 
temporally, since the FRN signal is generally delayed from 
the stimulus by ~250 ms, which will likely require some 
temporal blind source separation.
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