

Introduction:

Parkinsons Disease (PD), Essential Tremor (ET neurological movement disorders.

Involves pathological tremor (4-12 Hz)

Treatments: Drug therapy, surgical procedures **DBS:** 1) Involves implantation of electrodes and stimulates specific parts of the brain.

- 2) It provides remarkable therapeutic benefits f
- 3) FDA approved DBS operates open loop, is cor

For an automatic on-off control for DBS to be fe After cessation of a DBS-ON period, there wc duration that is tremor-free before tremors re-a There must be a means to predict when trem stimulation back on before the tremor re-appea □Signals used: surface EMG (sEMG), acceleration

Extensor sEMG was smoothed and following parameters were extracted: Spectral measures: Mean frequency, Peak frequency & signal power at peak frequency, power in (8-16 Hz) using wavelet decomposition. Entropy measures: wavelet entropy, sample entropy Recurrence measures: recurrence rate Parameters from acc data:

Mean frequency, Peak frequency & signal power at peak frequency.

This work has been submitted to IEEE Transactions in neural systems and rehabilitation engineering in April 2012.

Center for Science of Information NSF Science & Technology Center

Adaptive "on-off" controller for Deep Brain Stimulation (DBS) Ishita Basu, Daniel Graupe, Daniela Tuninetti, Pitamber Shukla, Konstantin V Slavin, Leo Verhagen Metman, Daniel Corcos Electrical & Computer Engineering, University of Illinois at Chicago.

F) are 2 most common progressive	Experiment
es (DBS). and a pacemaker, which electrically	
for advanced stage patients. ntinuous.	
easible: ould exist an interval of reasonable appears.	ET
nor is to re-appear, in order to switch ars. on (acc)	sEMG
arameters were extracted.	

	#TP + #TN				
	$A = \frac{1}{\#TP + \#TN + \#FP + \#FN}$	Patient	Α	S	FA
	$S = \frac{\#TP}{\#TP},$	PD1	93.6	100	NC
rue/False positive P/FP)	$\frac{\#IP + \#FN}{\#NTD - \#TN} \qquad R_{\rm pd} = \sum (t_{\rm pr} - t_{\rm off}) / \sum (t_{\rm tr} - t_{\rm off}),$	PD2	73.1	100	NC
	$FA = \frac{mTTD}{\#NTD}, \qquad R_{dt} = \sum (t_{tr} - t_{off}) / \sum (t_{tr} - t_{off}).$	PD3	88.2	100	NC
		PD4	75	100	27.3
lse negative N)	$R^* - \frac{t_{\rm tr} - t_{\rm off}}{R_{\rm pt}} = \sum (t_{\rm pr} - t_{\rm off}) / \sum (t_{\rm pr} - t_{\rm on})$	All PD	80.2	100	29.4
	$T_{\rm on}^*$ $T_{\rm tr}^* - t_{\rm off}$	ET1	80	100	NC
	$r_{pt}^2 - N \times mcc^2$ $r_{pt}^2 - \frac{T_{pt}}{T_{pr} - t_{off}} + T_{on}^*$	ET2	90	100	0
rue negative TN)	$\chi = N \times \text{Incc}$	ET3	87.5	100	16.7
2	mcc = $\frac{(\#TP)(\#TN) - (\#FP)(\#FN)}{(\#TP)(\#FN)}$	ET4	80	100	15
	$\sqrt{(\#TP + \#FP)(\#TP + \#FN)(\#TN + \#FP)(\#TN + \#FN)}$	All ET	85.7	100	11.6
alse positive FP)	Conclusion:				

PD

ON-OFF DBS can be designed as an add-on system to the existing one by using sEMG and acc from the tremor affected limbs of patients. The application would however be patient specific.

soihub.org