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Introduction

◮ Relay channel was introduced in 1971 by van der Meulen, but the capacity is

still open in general.

◮ Capacity is known for some special cases.

◮ Noise can be correlated due to an external common interference.
◮ Knowledge about the state can be available at the destination.

◮ Self-interference.
◮ State estimation.

System Model

◮ W ∈ {1, ...,M} message to be transmitted.
◮ An (M, n) code for this channel consists of

◮ Encoding function at source: f : {1, ...,M} → X n
1 × X n

2 ,
◮ Set of encoding functions at relay: XRi = fr(YR1, ...,YR(i−1)) i = 1, ..., n.
◮ Decoding function at destination: g : Yn

1 × Yn
2 × Zn → {1, ...,M}.

◮ Probability of error: Pe = 1
M

∑

w Pr{g(Y n
1 ,Y n

2 , Zn) 6= w |W = w}.

◮ R achievable if exists a sequence of (2nR
, n) codes s.t. Pe → 0 as n → ∞.

◮ The capacity C is the supremum of the set of achievable rates.

Research question

◮ Q1: Can we find a single-letter expression for the capacity of this special

relay channel model?
◮ Known transmission strategies

◮ Partial Decode and Forward (pDF): Relay decodes part of the message.

RDF = sup
p(x,x1)p(y,y1|x,x1)

min{I(X ;Y |X1), I(X ,X1;Y )}.

◮ Optimal for:
◮ Physically degraded relay channel, inversely degraded relay channel [1].
◮ Orthogonal relay channel [2].
◮ Semi-deterministic relay channel.

◮ Compress and Forward (CF): Relay compresses its received signal.

RCF = sup
p(x1)p(x2)p(y,y1|x1,x2)p(ŷ1|y1x2)

I(X1;Y Ŷ1|X2)

s.t. I(Ŷ1;Y1|Y ,X1) ≤ I(X1;Y |V ).

◮ Optimal for:
◮ A class of deterministic relay channels [3].
◮ A class of modulo-sum relay channels [4].

◮ Partial Decode Compress and Forward (PDCF): The relay decodes part of the message

and compresses the remainder.

RPDCF = sup min{I(X ;Y , Ŷ1|X1,U) + I(U;Y1|X1,V ), I(X ,X1;Y ) − I(Ŷ1;Y1|X ,X1,U,Y )},

s.t. I(Ŷ1;Y1|Y ,X1,U) ≤ I(X1;Y |V ),

over p(v)p(u|v)p(x|u)p(x1|v)p(y , y1|x, x1)p(ŷ1|x1, y1, u).

◮ Optimal for:
◮ A class of diamond relay channels [5].
◮ Up to now, not shown to be capacity achieving for any single relay channel model.

◮ Q2: Is any of these schemes capacity-achieving in our setting?

Main Result

Theorem (Capacity of the Orthogonal Relay with Channel State

Knowledge)

The capacity of the orthogonal relay channel with state,

(X1 × X2 × XR, p(z)p(yR|x1z)p(y1|xR)p(y2|x2),Y1 × Y2 × YR), is given by

C = sup
P

R1 + I(U; YR) + I(X1; ŶR|UZ),

s.t. R0 ≥ I(U; YR) + I(YR; ŶR|UZ).

where

P , {p(ux1zyRŷR) : p(u, x1)p(z)p(yR|x1z)p(ŷR|yRu)}.

and

R0 , max
p(xR)

I(XR;Y1), R1 , max
p(x2)

I(X2;Y2),

Example 1: Multihop Gaussian Relay Channel

◮ Let R1 = 0, (V , Z) bivariate Gaussian with correlation coefficient ρ and

YR = X1 + V .

◮ Evaluating with Gaussian auxiliary r.v.’s (potentially suboptimal)

◮ PDCF reduces to the best of DF and CF!

Example 2: Orthogonal Multihop Gaussian Relay Channel

◮ Add a parallel channel with N ∼ (0, 1) independent of (V , Z).

◮ PDCF becomes better than either DF or CF! (with Gaussian r.v.’s)

Outline of the Proof

◮ Converse:
◮ Single letter upper bound

Rup = sup
P

min{R1 + I(U;YR) + I(X1; ŶR|UZ),R0 + R1 − I(ŶR;YR|X1UZ)}.

◮ Equivalent expression for Rup

Rup = sup
P

R1 + I(U;YR) + I(X1; ŶR|UZ)

s.t. R0 ≥ I(U;YR) + I(ŶR;YR|UZ).

◮ Achievability
◮ PDCF evaluated with

◮ X n = (X n
1 ,X n

2 ), Y n = (Y n
1 ,Y n

2 , Z n), V = ∅.
◮ X n

R and X n
1 independent of the rest of variables and p(x∗

R) and p(x∗
1 ) are capacity achieving for corresponding

channels.

Is C Below the Cut-Set Bound?

◮ Cut-Set Bound

RCS = sup
p(x1)p(z)p(yR|x1z)

min{R0 + R1,R1 + I(X1;YR|Z)}.

◮ When C = RCS?
◮ R0 ≤ I(X1;YR) (DF optimal).
◮ YR independent of Z (DF optimal).
◮ YR = f (X1, Z) (CF optimal).

◮ For Example 1, R is below the cut set bound:

RCS = min







R0,R1 + log

(

1 +
P

1 − ρ2

)







.

◮ Assume RCS = R0.
◮ Necessary condition for C = RCS:

I(V ; ŶR|UZX1) = 0

◮ This condition can only be satisfied if (NŶRUZX1) are jointly Gaussian.
◮ Gaussian r.v.’s do not meet the cut-set bound in general (See Example 1).
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