

Center for Science of Information SF Science and Technology Center

Introduction

- Relay channel was introduced in 1971 by van der Meulen, but the capacity is still open in general.
- Capacity is known for some special cases.

- Noise can be correlated due to an external common interference.
- Knowledge about the state can be available at the destination.
- ► Self-interference.
- ► State estimation.

System Model

- $W \in \{1, ..., M\}$ message to be transmitted.
- ► An (*M*, *n*) code for this channel consists of
- Encoding function at source: $f : \{1, ..., M\} \rightarrow \mathcal{X}_1^n \times \mathcal{X}_2^n$,
- Set of encoding functions at relay: $X_{Ri} = f_r(Y_{R1}, ..., Y_{R(i-1)})$ i = 1, ..., n.
- ▶ Decoding function at destination: $g: \mathcal{Y}_1^n \times \mathcal{Y}_2^n \times \mathcal{Z}^n \rightarrow \{1, ..., M\}.$
- ▶ Probability of error: $P_e = \frac{1}{M} \sum_{w} Pr\{g(Y_1^n, Y_2^n, Z^n) \neq w | W = w\}.$
- ▶ **R** achievable if exists a sequence of $(2^{nR}, n)$ codes s.t. $P_e \rightarrow 0$ as $n \rightarrow \infty$.
- The capacity C is the supremum of the set of achievable rates.

Research question

- Q1: Can we find a single-letter expression for the capacity of this special relay channel model?
- Known transmission strategies
- Partial Decode and Forward (pDF): Relay decodes part of the message.

 $p(x,x_1)p(y,y_1|x,x_1)$

$$R_{DF} = \sup \min\{I(X; Y|X_1), I(X, X_1; Y)\}.$$

- Physically degraded relay channel, inversely degraded relay channel [1].
- Orthogonal relay channel [2].
- Semi-deterministic relay channel.
- Compress and Forward (CF): Relay compresses its received signal.

$$R_{CF} = \sup_{\substack{p(x_1)p(x_2)p(y,y_1|x_1,x_2)p(\hat{y}_1|y_1x_2) \\ \text{s.t. } I(\hat{Y}_1; Y_1|Y, X_1) \leq I(X_1; Y|V).}} I(X_1; Y|Y).$$

- Optimal for:
- A class of deterministic relay channels [3]. ► A class of modulo-sum relay channels [4]
- Partial Decode Compress and Forward (PDCF): The relay decodes part of the message and compresses the remainder.
- $R_{PDCF} = \sup\min\{I(X; Y, \hat{Y}_1 | X_1, U) + I(U; Y_1 | X_1, V), I(X, X_1; Y) I(\hat{Y}_1; Y_1 | X, X_1, U, Y)\},\$ s.t. $I(\hat{Y}_1; Y_1 | Y, X_1, U) \leq I(X_1; Y | V)$,

over $p(v)p(u|v)p(x|u)p(x_1|v)p(y, y_1|x, x_1)p(\hat{y}_1|x_1, y_1, u)$.

- Optimal for:
- A class of diamond relay channels [5].
- ▶ Up to now, not shown to be capacity achieving for any single relay channel model.

Q2: Is any of these schemes capacity-achieving in our setting?

Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)

Main Result

Theorem (Capacity of the Orthogonal Relay with Channel State Knowledge)

The capacity of the orthogonal relay channel with state, $(\mathcal{X}_1 \times \mathcal{X}_2 \times \mathcal{X}_R, p(z)p(y_R|x_1z)p(y_1|x_R)p(y_2|x_2), \mathcal{Y}_1 \times \mathcal{Y}_2 \times \mathcal{Y}_R)$, is given by

$$\mathcal{C} = \sup_{\mathcal{P}} R_1 + I(U; Y_R) + I(X_1; \hat{Y}_R | UZ),$$

s.t. $R_0 > I(U; Y_R) + I(Y_R; \hat{Y}_R | UZ).$

where

 $\mathcal{P} \triangleq \{p(ux_1zy_R\hat{y}_R) : p(u, x_1)p(z)p(y_R|x_1z)p(\hat{y}_R|y_Ru)\}.$

and

$$R_0 \triangleq \max_{p(x_R)} I(X_R; Y_1), \qquad R_1 \triangleq \max_{p(x_2)} I(X_2; Y_2),$$

Example 1: Multihop Gaussian Relay Channel

Let $R_1 = 0$, (V, Z) bivariate Gaussian with correlation coefficient ρ and $Y_R = X_1 + V.$

Evaluating with Gaussian auxiliary r.v.'s (potentially suboptimal)

PDCF reduces to the best of DF and CF!

Example 2: Orthogonal Multihop Gaussian Relay Channel

Add a parallel channel with $N \sim (0, 1)$ independent of (V, Z).

PDCF becomes better than either DF or CF! (with Gaussian r.v.'s)

 R_{CS} κ_{PDCF} R_{CF}

0.6 0.8 0.2 0.4 00 0 1.0

The Capacity of a Class of Relay Channels with State

