

# On The Most Significant Bit w.r.t. Side Information

Gowtham Ramani Kumar, ISL, Stanford

#### Introduction:

Given a single i.i.d. source  $X^n \sim \prod_{i=1}^n p(x_i)$ , one can find efficient schemes to compress it. However, one may not always be interested in  $X^n$ . One may instead be interested in a correlated sequence  $Y^n$ . For our setting, we simply assume  $X^n, Y^n \sim \prod p(x_i, y_i)$ . We also restrict ourselves to the simple case where  $X_i, Y_i$  are i.i.d. Bern(1/2) and are related via a BSC with crossover probability  $\alpha$ .

We are interested in the following question: If I am allowed to say only 1 bit of information about the  $X^n$  sequence, and my goal is to convey the maximum possible amount of information about the  $Y^n$  sequence, what is the 1 bit I must specify?

#### **Problem statement:**

Given:  $X^n, Y^n \sim \prod p(x_i, y_i)$ 

where 
$$p(x, y) = \begin{pmatrix} \frac{1-\alpha}{2} & \frac{\alpha}{2} \\ \frac{\alpha}{2} & \frac{1-\alpha}{2} \end{pmatrix}$$
,  $x, y \in \{-1, 1\}$ 

We are interested in a function  $b: X^n \to \{-1,1\}$  that maximizes

 $I(b; Y^n)$ 

# **Related results:**

- It is impossible to find  $b(X^n)$ ,  $\tilde{b}(Y^n)$  so that  $b = \tilde{b}$  with high probability unless  $\alpha = 0$ . [1]
- If the requirement is to compress  $X^n$  at a rate R while maximizing  $\frac{1}{n}I(M;Y^n)$ , then the initial efficiency

$$\lim_{R \to 0} \frac{\frac{1}{n}I(M;Y^n)}{R} = \rho^2$$

where  $\rho = EXY = (1 - 2\alpha)$  is the Renyi correlation between X and Y. [2]

• In [3], the authors discuss the information-bottleneck method: a generalization of rate-distortion function with distortion  $d(x, \tilde{x})$  depending on the joint-statistics p(x, y).

#### Motivation:

- Goal changed from minimizing distortion to describing a correlated sequence.
  - Example 1: X<sup>n</sup> is a sound file and Y<sup>n</sup> is the set of words in that sound file. [3]
  - Example 2: X<sup>n</sup> is an image of people in a bar and Y<sup>n</sup> is a list of their names. [3]
  - Example 3:  $X^n$  is side-information and  $Y^n$  is a horse-race. [2]
- Random coding fails for this problem!
  - A random bit  $b(X^n)$  is independent of  $Y^n$ .
  - In fact we can generate  $n(H(X|Y) \epsilon)$ random bits and guarantee independence.

# Inner bounds:

- The trivial inner bound:  $b(X^n) = X_1$  achieves  $I(X_1; Y^n) = 1 H(\alpha)$ .
- One can attempt to construct a more sophisticated inner bound: b(X<sup>n</sup>) = 1(X<sup>n</sup> has more 1's than 0's).
  To compute this inner bound:

Let 
$$\overline{X} = \frac{\sum X_i}{\sqrt{n}}$$
,  $\overline{Y} = \frac{\sum Y_i}{\sqrt{n}}$ . Then by CLT,  $\overline{X}$ ,  $\overline{Y}$  are jointly

Gaussian with unit variance and covariance  $\rho = EXY$ . It turns out this inner-bound is worse than the trivial inner

# Outer bound:

It was shown in [2] that if U - X - Y, then  $\frac{I(U;Y)}{I(U;X)} \le \rho^2$ Here,  $b - X^n - Y^n$  and  $I(b;X^n) \le 1$ . Hence,  $I(b;Y^n) \le \rho^2$ Here,  $\rho = 1 - 2\alpha$ .

# **References:**

bound.

#### A hypothesis:

It appears plausible that the trivial inner bound is optimal, i.e., for any bit  $b(X^n)$ ,  $I(b;Y^n) \le 1 - H(\alpha)$ 

#### Proof ideas?

Comments? Questions? Suggestions?

[1] H.S. Witsenhausen, "On sequences of pairs of dependent random variables", SIAM J. Appl. Maths, Vol. 28, Jan. 1975.

[2] Elza Erkip, Member, IEEE, and Thomas M. Cover, Fellow, IEEE, " The Efficiency of Investment Information", IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 3, MAY 1998.

[3] Naftali Tishby, Fernando C. Pereira, William Bialek, "The Information Bottleneck Method", The 37th annual Allerton Conference on Communication, Control, and Computing, Sep 1999: pp. 368–377.

# Center for Science of Information NSF Science & Technology Center soihub.org