(1). Information

Gowtham Ramani Kumar, ISL, Stanford

Introduction:

Given a single i.i.d. source $X^{n} \sim \prod_{i=1}^{n} p\left(x_{i}\right)$, one can find efficient schemes to compress it. However, one may not always be interested in X^{n}. One may instead be interested in a correlated sequence Y^{n}. For our setting, we simply assume $X^{n}, Y^{n} \sim \prod p\left(x_{i}, y_{i}\right)$. We also restrict ourselves to the simple case where X_{i}, Y_{i} are i.i.d. Bern(1/2) and are related via a BSC with crossover probability α.
We are interested in the following question: If I am allowed to say only 1 bit of information about the X^{n} sequence, and my goal is to convey the maximum possible amount of information about the Y^{n} sequence, what is the 1 bit I must specify?

Related results:

- It is impossible to find $b\left(X^{n}\right), \tilde{b}\left(Y^{n}\right)$ so that $b=\tilde{b}$ with high probability unless $\alpha=0$. [1]
- If the requirement is to compress X^{n} at a rate R while maximizing $\frac{1}{\mathrm{n}} I\left(M ; Y^{n}\right)$, then the initial efficiency

$$
\lim _{R \rightarrow 0} \frac{\frac{1}{\mathrm{n}} I\left(M ; Y^{n}\right)}{R}=\rho^{2}
$$

where $\rho=E X Y=(1-2 \alpha)$ is the Renyi correlation between X and Y. [2]

- In [3], the authors discuss the information-bottleneck method: a generalization of rate-distortion function with distortion $d(x, \tilde{x})$ depending on the joint-statistics $p(x, y)$.

Inner bounds:

- The trivial inner bound: $b\left(X^{n}\right)=X_{1}$ achieves $I\left(X_{1} ; Y^{n}\right)=1-H(\alpha)$.
- One can attempt to construct a more sophisticated inner bound: $b\left(X^{n}\right)=1$ (X^{n} has more 1's than 0 's).
To compute this inner bound:
Let $\bar{X}=\frac{\sum X_{i}}{\sqrt{n}}, \bar{Y}=\frac{\sum Y_{i}}{\sqrt{n}}$. Then by CLT, \bar{X}, \bar{Y} are jointly Gaussian with unit variance and covariance $\rho=E X Y$.
It turns out this inner-bound is worse than the trivial inner bound.

A hypothesis:

It appears plausible that the trivial inner bound is optimal, i.e., for any bit $b\left(X^{n}\right)$,

$$
I\left(b ; Y^{n}\right) \leq 1-H(\alpha)
$$

Proof ideas?
Comments? Questions? Suggestions?

Problem statement:

Given: $X^{n}, Y^{n} \sim \prod p\left(x_{i}, y_{i}\right)$
where $p(x, y)=\left(\begin{array}{cc}\frac{1-\alpha}{2} & \frac{\alpha}{2} \\ \frac{\alpha}{2} & \frac{1-\alpha}{2}\end{array}\right), x, y \in\{-1,1\}$
We are interested in a function $b: X^{n} \rightarrow\{-1,1\}$ that maximizes

$$
I\left(b ; Y^{n}\right)
$$

Motivation:

- Goal changed from minimizing distortion to describing a correlated sequence.
- Example 1: X^{n} is a sound file and Y^{n} is the set of words in that sound file. [3]
- Example 2: X^{n} is an image of people in a bar and Y^{n} is a list of their names. [3]
- Example 3: X^{n} is side-information and Y^{n} is a horse-race. [2]
- Random coding fails for this problem!
- A random bit $b\left(X^{n}\right)$ is independent of Y^{n}.
- In fact we can generate $\mathrm{n}(H(X \mid Y)-\epsilon)$ random bits and guarantee independence.

Outer bound:

It was shown in [2] that if $U-X-Y$, then

$$
\frac{I(U ; Y)}{I(U ; X)} \leq \rho^{2}
$$

Here, $b-X^{n}-Y^{n}$ and $I\left(b ; X^{n}\right) \leq 1$. Hence, $I\left(b ; Y^{n}\right) \leq \rho^{\wedge} 2$
Here, $\rho=1-2 \alpha$.

References:

[1] H.S. Witsenhausen, "On sequences of pairs of dependent random variables", SIAM J. Appl. Maths, Vol. 28, Jan. 1975.
[2] Elza Erkip, Member, IEEE, and Thomas M. Cover, Fellow, IEEE, " The Efficiency of Investment Information", IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 3, MAY 1998.
[3] Naftali Tishby, Fernando C. Pereira, William Bialek, " The Information Bottleneck Method", The 37th annual Allerton Conference on Communication, Control, and Computing, Sep 1999: pp. 368-377.

